Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylene electrochemical

Although polyacetylene has served as an excellent prototype for understanding the chemistry and physics of electrical conductivity in organic polymers, its instabiUty in both the neutral and doped forms precludes any useful appHcation. In contrast to poly acetylene, both polyaniline and polypyrrole are significantly more stable as electrical conductors. When addressing polymer stabiUty it is necessary to know the environmental conditions to which it will be exposed these conditions can vary quite widely. For example, many of the electrode appHcations require long-term chemical and electrochemical stabihty at room temperature while the polymer is immersed in electrolyte. Aerospace appHcations, on the other hand, can have quite severe stabiHty restrictions with testing carried out at elevated temperatures and humidities. [Pg.43]

Electrochemical reduction of 2,3-diphenylthiirene 1-oxide yields acetylene (80%) and benzil (10%). Electrolysis of 2,3-diphenylthiirene 1,1-dioxide in DMF gives trans-stilbene (30%) but in the presence of acetic acid, 1,2-diphenylvinylmethyl sulfone (27%) is obtained in addition to the stilbene (40%) (81CC120). [Pg.167]

Cydization of acetylenic ketones to allyl alcohots by one electfon reduction with Li/NHa, also electrochemically (Shorn) or by Smia (Molander)... [Pg.372]

Electrochemically generated trifluoromethyl radicals add to 1-hexyne to give a 1 4 mixture of ( )- and (Z)-l,l,l-trifluoro-2-heptene [22] Kinetic data on the addition of photochemically generated trifluoromethyl radicals to acetylene and substituted acetylenes were reported [2J]. Alcohols and aldehydes add to hexa-fluoro-2-butyne in the presence of peroxide and y-ray initiation [24] (equations 16 and 17). [Pg.761]

Electrochemical addition of perfluorobutyl iodide to 2-methyl-3-butyn-2-ol followed by basic dehydroiodmation and thermal cleavage gives perfluorobutyl-acetylene in an overall yield of 83% [34] (equation 26)... [Pg.763]

The four mechanisms discussed above, of the action of inhibitors remain essentially unchanged. Further work on acetylenic alcohols has indicated that barrier films can form owing to crosslinking by hydrogen bonding and synergistic interactions . Theoretical treatments of the electrochemical... [Pg.824]

The studies by Biermann et al. [28] indicate that the carbon blacks used as the conductive matrix in Leclanche cells remain chemically inert, that is, they do not undergo oxidation during storage or discharge of the cell. However, Caudle et al. [29] found evidence that the ion-exchange properties of carbon black, which exist because of the presence of surface redox groups, are responsible for electrochemical interactions with Mn02. The extent of MnO, reduction to MnOOH depends on the carbon black (i.e., furnace black > acetylene black). [Pg.238]

Here we introduce a personal point of view about the interactions between conducting polymers and electrochemistry their synthesis, electrochemical properties, and electrochemical applications. Conducting polymers are new materials that were developed in the late 1970s as intrinsically electronic conductors at the molecular level. Ideal monodimensional chains of poly acetylene, polypyrrole, polythiophene, etc. can be seen in Fig. 1. One of the most fascinating aspects of these polymeric... [Pg.308]

S. Tracey, A. Palermo, J.P.H. Vazquez, and R.M. Lambert, In Situ Electrochemical Promotion by Sodium of the Selective Hydrogenation of Acetylene over Platinum, J. Catal. 179, 231-240 (1998). [Pg.187]

In certain cases, Michael reactions can take place under acidic conditions. Michael-type addition of radicals to conjugated carbonyl compounds is also known.Radical addition can be catalyzed by Yb(OTf)3, but radicals add under standard conditions as well, even intramolecularly. Electrochemical-initiated Michael additions are known, and aryl halides add in the presence of NiBr2. Michael reactions are sometimes applied to substrates of the type C=C—Z, where the co-products are conjugated systems of the type C=C—Indeed, because of the greater susceptibility of triple bonds to nucleophilic attack, it is even possible for nonactivated alkynes (e.g., acetylene), to be substrates in this... [Pg.1024]

Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed. Figure 13 shows the irreversible conversion of a nonconjugated poly (p-phenylene pentadienylene) to a lithiun-doped conjugated derivative which has a semiconducting level of conductivity (0.1 to 1.0 S/cm) (29). Obviously, the neutral conjugated derivative of poly (p-phenylene pentadienylene) can then be reversibly generated from the n-type doped material by electrochemical undoping or by p-type compensation. A very similar synthetic method for the conversion of poly(acetylene-co-1,3-butadiene) to polyacetylene has been reported (30), Figure 14. This synthesis of polyacetylene from a nonconjugated precursor polymer containing isolated CH2 units in an otherwise conjugated chain is to be contrasted with the early approach of Marvel et al (6) in which an all-sp3 carbon chain was employed.
Table 5.3 Examples of electronically conducting polymers, y is the level of electrochemical doping and k is the maximum electrical conductivity. Except for poly acetylene and polyparaphenylene, only p-doping is considered... [Pg.337]

Feoktistov and coworkers 57) found a third mode of reactivity in a closely related system. The electrochemical reduction of the diethyl esters of dichloro-maleic (56) and dichlorofumaric (57) acid was studied. Neither afforded the corresponding acetylene. [Pg.22]

The stereochemistry of electrochemical reduction of acetylenes is highly dependent upon the experimental conditions under which the electrolysis is carried out. Campbell and Young found many years ago that reduction of acetylenes in alcoholic sulfuric acid at a spongy nickel cathode produces cis-olefins in good yields 126>. It is very likely that this reduction involves a mechanism akin to catalytic hydrogenation, since the reduction does not take place at all at cathode substances, such as mercury, which are known to be poor hydrogenation catalysts. The reduction also probably involves the adsorbed acetylene as an intermediate, since olefins are not reduced at all under these conditions and since hydrogen evolution does not occur at the cathode until reduction of the acetylene is complete. Acetylenes may also be reduced to cis olefins in acidic media at a silver-palladium alloy cathode, 27>. [Pg.40]

Electronically conducting polymers (ECPs) such as polyaniline (PANI), polypyrrole (PPy) and po 1 y(3.4-cthy 1 cncdi oxyth iophcnc) (PEDOT) have been applied in supercapacitors, due to their excellent electrochemical properties and lower cost than other ECPs. We demonstrated that multi-walled carbon nanotubes (CNTs) prepared by catalytic decomposition of acetylene in a solid solution are very effective conductivity additives in composite materials based on ECPs. In this paper, we show that a successful application of ECPs in supercapacitor technologies could be possible only in an asymmetric configuration, i.e. with electrodes of different nature. [Pg.64]

Pd(II)-catalyzed dialkoxy- or dihydroxycarbonylation of alkynes (Eq. 22, R = alkyl or H, respectively) with formation of maleic and fumaric esters or acids (and, in the case of acetylene, of muconic esters too), has been reported to occur in the presence of CuCl2 and/or 02 as oxidant [73-79] electrochemical reoxidation of Pd(0) has also been described [80]. [Pg.251]

The indirect cyclisation of bromoacetals via cobaloxime(I) complexes was first reported in 1985 [67], At that time the reactions were conducted in a divided cell in the presence of a base (40yo aqeous NaOH) and about 50% of chloropyridine cobaloximeflll) as catalyst precursor. It was recently found that the amount of catalyst can be reduced to 5% (turnover of ca. 50) and that the base is no longer necessary when the reactions are conducted in an undivided cell in the presence of a zinc anode [68, 69]. The method has now been applied with cobaloxime or Co[C2(DOXDOH)p ] to a variety of ethylenic and acetylenic compounds to prepare fused bicyclic derivatives (Table 7, entry 1). The cyclic product can be either saturated or unsaturated depending on the amount of catalyst used, the cathode potential, and the presence of a hydrogen donor, e.g., RSH (Table 7, entry 2). The electrochemical method was found with some model reactions to be more selective and more efficient than the chemical route using Zn as reductant [70]. [Pg.155]

Triple bonds in side chains of aromatics can be reduced to double bonds or completely saturated. The outcome of such reductions depends on the structure of the acetylene and on the method of reduction. If the triple bond is not conjugated with the benzene ring it can be handled in the same way as in aliphatic acetylenes. In addition, electrochemical reduction in a solution of lithium chloride in methylamine has been used for partial reduction to alkenes trans isomers, where applicable) in 40-51% yields (with 2,5-dihydroaromatic alkenes as by-products) [379]. Aromatic acetylenes with triple bonds conjugated with benzene rings can be hydrogenated over Raney nickel to cis olefins [356], or to alkyl aromatics over rhenium sulfide catalyst [54]. Electroreduction in methylamine containing lithium chloride gives 80% yields of alkyl aromatics [379]. [Pg.49]

The oxidation of propargyl alcohol to the acid and of but-2-yne-l,4-diol to acetylene dicarboxylic acid is carried out on a technical scale at a lead dioxide anode in sulphuric acid [4, 5]. Electrochemical oxidation of acetylenic secondary alcohols to the ketone at lead dioxide in aqueous sulphuric acid [4], gives better results than the cliromic acid based process of Jones [6], Oxidation of aminoalkan-1-ols to the amino acid at a lead dioxide anode in sulphuric acid is achieved in 31 -73 % 5delds [7]. This route is applied to the technical scale production of (l-alanine from 3-aminopropanol in an undivided cell [8]. [Pg.262]

The efficient formation of diaryliodo-nium salts during the electrolysis of arylio-dides has been reported by Peacock and Fletcher [166]. The electroiodination of a 3D-aromatic molecule, dodecahydro-7,8-dicarba-nido-undecaborate has also been reported [167]. The iodination (and bromi-nation) of dimedone has been reported to yield 2-iododimedone, which formally is an electrophilic substitution reaction [123]. In a similar process, the indirect electrochemical oxidation of aliphatic ketones in an alkaline Nal/NaOH solution environment has been shown to yield a,a-diiodoketones, which rapidly rearrange to give unsaturated conjugated esters [168]. Dibenzoylmethane has been converted into dibenzoyliodomethane [169]. Terminal acetylenes have been iodinated in the presence of Nal. However, this process was proposed to proceed via oxidation of the acetylene [170]. [Pg.294]

The electrochemical allylation of carbonyl compounds by electroreductivc regeneration of a diallyltin reagent from allyl bromide and a Sn species leads to formation of homoallylic alcohols in yields of 70-90 % even in methanol or methanol/water (Table 7, No. 12) Bisaryl formation is possible also from aryl iodides or bromides in the presence of electro-generated Pd phosphane complexes (Table 7, No. 13) In the presence of styrenes, 1,3-butadienes, or phenyl acetylene the products of ArH addition are formed in this way (Table 7, No. 14) . The electroreductivc cleavage of allylic acetates is also possible by catalysis of an Pd°-complex (Table K No. 15)... [Pg.42]


See other pages where Acetylene electrochemical is mentioned: [Pg.241]    [Pg.453]    [Pg.567]    [Pg.570]    [Pg.69]    [Pg.634]    [Pg.1217]    [Pg.16]    [Pg.187]    [Pg.41]    [Pg.66]    [Pg.474]    [Pg.236]    [Pg.8]    [Pg.322]    [Pg.369]    [Pg.563]    [Pg.55]    [Pg.594]    [Pg.39]    [Pg.303]    [Pg.652]    [Pg.644]    [Pg.311]    [Pg.151]    [Pg.9]   
See also in sourсe #XX -- [ Pg.952 ]




SEARCH



© 2024 chempedia.info