Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

X-ray diffraction spectrometry

Nitrides. Nitride formation on the surface of molybdenum has been revealed by high-temperature etching with ammonia, and the nitrides were characterized by X-ray diffraction spectrometry.378 The diffusion layer formed on molybdenum consists of Mo2N at >950°C and MoN at <950°C. The interaction of ammonia with a tungsten surface can generate dense adlayers such as W2N3H.379... [Pg.124]

Raman microscopy is able to determine phases for polymorphic solids at the microscopic level. This is its advantage over conventional X-ray diffraction spectrometry in which the sample volume cannot be too small. Phase identification with Raman spectroscopy uses... [Pg.285]

Different sorts of spectra should be describable, for example, Fourier transformation/infrared (FT/IR), Raman, UVA IS spectrometry. X-ray diffraction spectrometry, nuclear magnetic resonance (NMR), or MS. [Pg.275]

Present day techniques for structure determination in carbohydrate chemistry are sub stantially the same as those for any other type of compound The full range of modern instrumental methods including mass spectrometry and infrared and nuclear magnetic resonance spectroscopy is brought to bear on the problem If the unknown substance is crystalline X ray diffraction can provide precise structural information that m the best cases IS equivalent to taking a three dimensional photograph of the molecule... [Pg.1052]

TaF has been characterized by ir, Raman, x-ray diffraction, and mass spectrometry (3,11,12). TaF has been used as a superacid catalyst for the conversion of CH to gasoline-range hydrocarbons (qv) (12) in the manufacture of fluoride glass and fluoride glass optical fiber preforms (13), and incorporated in semiconductor devices (14). TaF is also a catalyst for the Hquid-phase addition of HF to polychlorinated ethenes (15). The chemistry of TaF has been reviewed (1,16—19). Total commercial production for TaF is thought to be no more than a few hundred kilograms aimuaHy. [Pg.252]

The melting points, optical rotations, and uv spectral data for selected prostanoids are provided in Table 1. Additional physical properties for the primary PGs have been summarized in the Hterature and the physical methods have been reviewed (47). The molecular conformations of PGE2 and PGA have been determined in the soHd state by x-ray diffraction, and special H and nuclear magnetic resonance (nmr) spectral studies of several PGs have been reported (11,48—53). Mass spectral data have also been compiled (54) (see Mass spectrometry Spectroscopy). [Pg.153]

Among the modem procedures utilized to estabUsh the chemical stmcture of a molecule, nuclear magnetic resonance (nmr) is the most widely used technique. Mass spectrometry is distinguished by its abiUty to determine molecular formulas on minute amounts, but provides no information on stereochemistry. The third most important technique is x-ray diffraction crystallography, used to estabUsh the relative and absolute configuration of any molecule that forms suitable crystals. Other physical techniques, although useful, provide less information on stmctural problems. [Pg.306]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

AH of these properties of x-rays are used to measure various properties of materials. X-ray appHcations can be placed into three categories based on which of the above phenomena are exploited. These categories are x-ray radiography, x-ray fluorescence spectrometry, and x-ray diffraction. [Pg.372]

The synthetic preparation of 2,8-dichlorodibenzo-p-dioxin was facilitated in that the chemical precursor, 2,4,4 -trichloro-2 -hydroxydiphenyl ether, was available as a pure material. Condensation was induced by heating the potassium salt at 200 °C for 15 hours in bis (2-ethoxyethyl) ether. Product analysis by GLC and mass spectrometry revealed an unexpected dichlorophenol and a monochlorodibenzo-p-dioxin. Further, the product initially isolated by crystallization from the reaction mixture was 2,7-dichlorodibenzo-p-dioxin, rather than the expected 2,8-isomer. Cooling of the mother liquor yielded crystalline plates which were shown to be 2,8-dichlorodibenzo-p-dioxin by x-ray diffraction (Reaction 2). [Pg.127]

Dichlorodibenzo- -dioxin. 2-Bromo-4-chlorophenol (31 grams, 0.15 mole) and solid potassium hydroxide (8.4 grams, 0.13 mole) were dissolved in methanol and evaporated to dryness under reduced pressure. The residue was mixed with 50 ml of bEEE, 0.5 ml of ethylene diacetate, and 200 mg of copper catalyst. The turbid mixture was stirred and heated at 200°C for 15 hours. Cooling produced a thick slurry which was transferred into the 500-ml reservoir of a liquid chromatographic column (1.5 X 25 cm) packed with acetate ion exchange resin (Bio-Rad, AG1-X2, 200-400 mesh). The product was eluted from the column with 3 liters of chloroform. After evaporation, the residue was heated at 170°C/2 mm for 14 hours in a 300-cc Nestor-Faust sublimer. The identity of the sublimed product (14 grams, 74% yield) was confirmed by mass spectrometry and x-ray diffraction. Product purity was estimated at 99- -% by GLC (electron capture detector). [Pg.132]

Determined by inductively coupled plasma-mass spectrometry of acid digested catalyst samples Calculated from X-ray diffraction peak broadening at (101) foranatase and (110) formtile TiOa Mean particle diameter measured from transmission electron microscopy pictures of gold catalysts... [Pg.414]

These special features are explained by an interaction between the proton and one of the water molecules, which is not merely electrostatic but also covalent. This yields a new chemical species, the hydroxonium ion, HjO. The existence of such ions was demonstrated in the gas phase by mass spectrometry and in the solid phase by X-ray diffraction and nuclear magnetic resonance. The H -H20 bond has an energy of 712kJ/mol, which is almost two-thirds of the total proton hydration energy. [Pg.111]

The structures of compounds 55a,c and 56a,c were established by means of NMR spectroscopy and mass spectrometry. Due to the different polarity of the C=N and C=P triple bonds, the silicon ring atom in 55a,c is bound to the nitrogen atom, and in 56a,c to the carbon atom of the C=P moiety. The molecular structure of 55a was further determined by single-crystal X-ray diffraction analysis (Fig. 16).14 The four-membered SiNAsC framework is slightly puckered (folding angle N—Si—C/Si—C—As 7°), and... [Pg.225]

In order to gain information on the environments of certain atoms in dissolved species, in melts or in solids (crystalline or noncrystalline), which are not accessible to diffraction studies for one reason or another, X-ray absorption spectrometry (XAS) can be applied, with the analysis of the X-ray absorption near-edge structure (XANES) and/or the extended X-ray absorption fine structure (EXAFS). Surveys of these methods are available 39,40 a representative study of the solvation of some mercury species, ElgX2, in water and dimethylsulfoxide (DMSO) by EXAFS and XANES, combined with quantum-chemical calculations, has been published.41... [Pg.1256]

Interpretation of measurements of methods X-ray fluorescence spectrometry (Janssen and van Espen [1986] Arnold et al. [1994]), X-ray diffraction spectra (Adler et al. [1993]), NMR spectra (HIPS, Wehrens et al. [1993a]), HPLC retention indices (RIPS, Wehrens [1994]), Karl Fischer titration (HELGA, Wunsch and Gansen [1989]). [Pg.273]

The samples were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, 57Fe Mossbauer spectroscopy [2] and Rutherford backscattering spectrometry (RBS). [Pg.178]


See other pages where X-ray diffraction spectrometry is mentioned: [Pg.541]    [Pg.541]    [Pg.178]    [Pg.285]    [Pg.2839]    [Pg.155]    [Pg.541]    [Pg.541]    [Pg.178]    [Pg.285]    [Pg.2839]    [Pg.155]    [Pg.420]    [Pg.445]    [Pg.383]    [Pg.263]    [Pg.632]    [Pg.39]    [Pg.276]    [Pg.141]    [Pg.18]    [Pg.6]    [Pg.216]    [Pg.16]    [Pg.1161]    [Pg.1256]    [Pg.1261]    [Pg.1263]    [Pg.1284]    [Pg.455]    [Pg.231]    [Pg.130]    [Pg.149]    [Pg.15]    [Pg.224]    [Pg.235]    [Pg.427]   
See also in sourсe #XX -- [ Pg.275 ]




SEARCH



X-ray spectrometry

© 2024 chempedia.info