Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Weakly carbon monoxide

Scholten determined the surface area of the alumina present in reduced ammonia synthesis catalysts. He established that alumina accounted for an appreciable fraction of the total surface area of the catalyst, approaching about 60%. Earlier in the chapter evidence was presented that Fe(II) can react with alumina to form iron (II) aluminate or it can dissolve into the alumina. There is evidence that carbon monoxide can be adsorbed onto the Fe(II) component present within the oxide surface. If this adsorption is strong, the determination of the free iron metallic surface may be inaccurate since a fraction of the oxidic surface may be responsible for adsorption of some of the carbon monoxide included in the calculation. Adsorption of carbon monoxide on the Fe(II) surface ions has indeed been demonstrated by infrared spectroscopy, but the adsorption is weak. Carbon monoxide adsorbed on Fe(II) ions can be removed readily, simply by evacuation at room temperature. [Pg.191]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Further down, ca 75 cm below the electrode tips, the mix is hot enough (2200—2500°C) to allow the lime to melt. The coke does not melt and the hquid lime percolates downward through the relatively fixed bed of coke forming calcium carbide, which is Hquid at this temperature. Both Hquids erode coke particles as they flow downward. The weak carbide first formed is converted to richer material by continued contact and reaction with coke particles. The carbon monoxide gas produced in this area must be released by flowing back up through the charge. The process continues down to the taphole level. Material in this area consists of soHd coke wetted in a pool of Hquid lime and Hquid calcium carbide at the furnace bottom. [Pg.461]

Because the solution is capable of absorbing one mole of carbon monoxide per mole of cuprous ion, it is desirable to maximize the copper content of the solution. The ammonia not only complexes with the cuprous ion to permit absorption but also increases the copper solubiUty and thereby permits an even greater carbon monoxide absorption capacity. The ammonia concentration is set by a balance between ammonia vapor pressure and solution acidity. Weak organic acids, eg, formic, acetic, and carbonic acid, are used because they are relatively noncorrosive and inexpensive. A typical formic acid... [Pg.54]

Step through the sequence of structures representing dissociation oiketene to methylene and carbon monoxide. Plot energy (vertical axis) vs. carbon-carbon bond distance (horizontal axis). Would you describe ketene as a weak complex between singlet methylene and carbon monoxide Explain. (A table of CC and CO bond lengths is found at left.) Is there an energy barrier to the dissociation ... [Pg.244]

RuCl2(PPh3)2 reacts with 4-R2P-dibenzothiophene (R = Ph, p-Tol) and forms 303, in which the dibenzothiophene ligand is coordinated to ruthenium via the phosphorus and sulfur atoms [84JA5379, 87JOM(318)409]. The donor ability of the sulfur atom is relatively weak. Complex 303 (R = Ph) is able to add carbon monoxide and yield the monocarbonyl adduct. [Pg.46]

Exposure to carbon monoxide resulting from inadequate ventilation and/or leakage of combustion products may cause headaches, chronic tiredness or muscular weakness. High concentrations or long-term exposure may be fatal. Normal resuscitation methods and medical advice should be sought for those suffering from these effects. [Pg.273]

Discuss the range of values that the orders in hydrogen, carbon monoxide and methanol may assume if hydrogen adsorbs more weakly than the other gases. [Pg.417]

Finally, the term steric stabihzation coifid be used to describe protective transition-metal colloids with traditional ligands or solvents [38]. This stabilization occurs by (i) the strong coordination of various metal nanoparticles with ligands such as phosphines [48-51], thiols [52-55], amines [54,56-58], oxazolines [59] or carbon monoxide [51] (ii) weak interactions with solvents such as tetrahydrofuran or various alcohols. Several examples are known with Ru, Ft and Rh nanoparticles [51,60-63]. In a few cases, it has been estab-hshed that a coordinated solvent such as heptanol is present at the surface and acts as a weakly coordinating ligand [61]. [Pg.265]

Adsorbed carbon monoxide on platinum formed at 455 mV in H2S04 presents a thermal desorption spectrum as shown in Fig. 2.4b. As in the case of CO adsorption from the gas phase, the desorption curve for m/e = 28 exhibits two peaks, one near 450 K for the weakly adsorbed CO and the other at 530 K for the strongly adsorbed CO species. The H2 signal remains at the ground level. A slight increase in C02 concentration compared to the blank is observed, which could be due to a surface reaction with ions of the electrolyte. Small amounts of S02 (m/e = 64) are also observed. [Pg.143]

Chemisorption measurements (Quantachrome Instruments, ChemBET 3000) were conducted in order to determine the metal (Co) dispersion. Therefore, the nanomaterial catalysts were reduced under a hydrogen flow (10% H2 in Ar) at 633 K for 3 h. The samples were then flushed with helium for another hour at the same temperature in order to remove the weakly adsorbed hydrogen. Chemisorption was carried out by applying a pulse-titration method with carbon monoxide as adsorbing agent at 77 K. The calculation of the dispersion is based on a molar adsorption stoichiometry of CO to Co of 1. [Pg.20]

Formally, the lone pairs on molecular nitrogen, hydrogen cyanide, and carbon monoxide are sp hybrid orbitals, whereas NLMO hybridizations calculated even lower p contributions. Hence, these lone pairs have low directionality, the electron density remains close to the coordinating atom and interaction between the lone pair and the Be2+ is comparatively weak. The Be-L bonds are easily disrupted and ligand exchange consequently can proceed with a low activation barrier. A high degree of p character, on the other hand, means that the lone pair is directed toward beryllium, with electron density close to the metal center, and thus well suited for coordination. [Pg.555]

The behavior of 3 toward ether or amines on the one hand and toward phosphines, carbon monoxide, and COD on the other (Scheme 2), can be qualitatively explained on the basis of the HSAB concept4 (58). The decomposition of 3 by ethers or amines is then seen as the displacement of the halide anion as a weak hard base from its acid-base complex (3). On the other hand, CO, PR3, and olefins are soft bases and do not decompose (3) instead, complexation to the nickel atom occurs. The behavior of complexes 3 and 4 toward different kinds of electron donors explains in part why they are highly active as catalysts for the oligomerization of olefins in contrast to the dimeric ir-allylnickel halides (1) which show low catalytic activity. One of the functions of the Lewis acid is to remove charge from the nickel, thereby increasing the affinity of the nickel atom for soft donors such as CO, PR3, etc., and for substrate olefin molecules. A second possibility, an increase in reactivity of the nickel-carbon and nickel-hydrogen bonds toward complexed olefins, has as yet found no direct experimental support. [Pg.112]

The purpose of this article is to review the results of transient low pressure studies of carbon monoxide oxidation over transition metal substrates. Particular emphasis is given to the use of in-situ electron spectroscopy, flash desorption, modulated beam and titration techniques. The strengths and weaknesses of these will be assessed with regard to kinetic insight and quantification. An attempt will be made to identify questions that are ripe for investigation. Although not limited to it, the presentation emphasizes our own work. A very recent review of the carbon monoxide oxidation reaction C l) will be useful to readers who are interested in a more comprehensive view. [Pg.33]

The product is exclusively carbon monoxide, and good turnover numbers are found in preparative-scale electrolysis. Analysis of the reaction orders in CO2 and AH suggests the mechanism depicted in Scheme 4.6. After generation of the iron(O) complex, the first step in the catalytic reaction is the formation of an adduct with one molecule of CO2. Only one form of the resulting complex is shown in the scheme. Other forms may result from the attack of CO2 on the porphyrin, since all the electronic density is not necessarily concentrated on the iron atom [an iron(I) anion radical and an iron(II) di-anion mesomeric forms may mix to some extent with the form shown in the scheme, in which all the electronic density is located on iron]. Addition of a weak Bronsted acid stabilizes the iron(II) carbene-like structure of the adduct, which then produces the carbon monoxide complex after elimination of a water molecule. The formation of carbon monoxide, which is the only electrolysis product, also appears in the cyclic voltammogram. The anodic peak 2a, corresponding to the reoxidation of iron(II) into iron(III) is indeed shifted toward a more negative value, 2a, as it is when CO is added to the solution. [Pg.262]

Strengths 1. Effective against the complete range of indoor air pollutants including organic- bio-aerosols, VOCs, odors and carbon monoxide 2. New advanced technology 3. Inexpensive material 4. Easy to manufacture. Weaknesses 1. Unable to remedy inorganic aerosols 2. Low clean air delivery rate (< 100 cfm) 3. Produces carbon dioxide. [Pg.362]

Carbon monoxide is a clear and colorless gas, with no odor. Mrs. Madison was aware of nothing—only the blinding headache and the weakness that finally incapacitated her and her friends. [Pg.20]

As we saw with Mrs. Madison, the effects of carbon monoxide at relatively low atmospheric concentrations, such as 50 to 100 ppm, can be serious but are insidious in their onset so that the victim may not be aware of trouble until it is too late. These effects include headache, which may become severe and prolonged, nausea, dizziness, and weakness. As the condition develops, there will be mental confusion and ultimately unconsciousness, perhaps with convulsions. At lesser concentrations, of course, the effects will be less severe, while at high concentrations (for example, 0.3% to 0.4%) the effects can be dramatic, with rapid unconsciousness and death. [Pg.57]

Carbon Monoxide. There are close similarities between carbon monoxide and nitrogen. The molecules are isoelectronic, and the bond lengths and dissociation energies are quite comparable. The phase diagrams of the two compounds show the same trends in the moderate pressure range with a variety of phase transitions between essentially alike crystal structures [333], when allowance is made for the lack of the inversion center and the presence of a weak electric dipole moment in carbon monoxide. However, the behavior and stability at higher... [Pg.172]

Because of n-electron donation by the heteroatom, these carbene complexes are generally less electrophilic at C than the corresponding non-heteroatom-substituted complexes (Chapter 3). This effect is even more pronounced in bis-heteroatom-substituted carbenes, which are very weak Tt-acceptors and towards low-valent transition metals show binding properties similar to those of phosphines or pyridine. Alkoxycarbenes, on the other hand, have electronic properties similar to those of carbon monoxide, and stable heteroatom-monosubstituted carbene complexes are also usually formed from metals which form stable carbonyl complexes. [Pg.13]

Infrared spectroscopy can be used to obtain a great deal of information about zeolitic materials. As mentioned earlier, analysis of the resulting absorbance bands can be used to get information about the structure of the zeolite and other functional groups present due to the synthesis and subsequent treatments. In addition, infrared spectroscopy can be combined with adsorption of weak acid and base probe molecules to obtain information about the acidity and basicity of the material. Other probe molecules such as carbon monoxide and nitric oxide can be used to get information about the oxidation state, dispersion and location of metals on metal-loaded zeolites. [Pg.113]


See other pages where Weakly carbon monoxide is mentioned: [Pg.714]    [Pg.172]    [Pg.59]    [Pg.181]    [Pg.858]    [Pg.36]    [Pg.660]    [Pg.144]    [Pg.52]    [Pg.156]    [Pg.27]    [Pg.200]    [Pg.179]    [Pg.93]    [Pg.56]    [Pg.583]    [Pg.260]    [Pg.80]    [Pg.429]    [Pg.499]    [Pg.14]    [Pg.352]    [Pg.176]    [Pg.22]    [Pg.385]    [Pg.58]    [Pg.75]    [Pg.242]    [Pg.16]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



© 2024 chempedia.info