Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted acids, weak

Physisorbed Lewis and Bronsted acid (Weak) Lewis acid... [Pg.49]

Boron trioxide is not particularly soluble in water but it slowly dissolves to form both dioxo(HB02)(meta) and trioxo(H3B03) (ortho) boric acids. It is a dimorphous oxide and exists as either a glassy or a crystalline solid. Boron trioxide is an acidic oxide and combines with metal oxides and hydroxides to form borates, some of which have characteristic colours—a fact utilised in analysis as the "borax bead test , cf alumina p. 150. Boric acid. H3BO3. properly called trioxoboric acid, may be prepared by adding excess hydrochloric or sulphuric acid to a hot saturated solution of borax, sodium heptaoxotetraborate, Na2B407, when the only moderately soluble boric acid separates as white flaky crystals on cooling. Boric acid is a very weak monobasic acid it is, in fact, a Lewis acid since its acidity is due to an initial acceptance of a lone pair of electrons from water rather than direct proton donation as in the case of Lowry-Bronsted acids, i.e. [Pg.148]

Possible role of the induced acidity and basicity in catalysis and environmental chemistry is discussed. The suggested mechanism explains the earlier reported promotive effect of some gases in the reactions catalyzed by Bronsted acid sites. Interaction between the weakly adsorbed air pollutants could lead to the enhancement of their uptake by aerosol particles as compared with separate adsoi ption, thus favoring air purification. [Pg.56]

Lateral interactions between the adsorbed molecules can affect dramatically the strength of surface sites. Coadsorption of weak acids with basic test molecules reveal the effect of induced Bronsted acidity, when in the presence of SO, or NO, protonation of such bases as NH, pyridine or 2,6-dimethylpyridine occurs on silanol groups that never manifest any Bronsted acidity. This suggests explanation of promotive action of gaseous acids in the reactions catalyzed by Bronsted sites. Just the same, presence of adsorbed bases leads to the increase of surface basicity, which can be detected by adsorption of CHF. ... [Pg.431]

The catalyst acid sites are both Bronsted and Lewis type. The catalyst can have either strong or weak Bronsted sites or, strong i)i weak Lewis sites. A Bronsted-type acid is a substance capable of donating a proton. Hydrochloric and sulfuric acids are typical Bronsted acids. A Lewis-type acid is a substance that accepts a pair of electrons. Lewis acids may not have hydrogen in them but they are still acids. Aluminum chloride is the classic example of a Lewis acid. Dissolved in water, it will react with hydroxyl, causing a drop in solution pH. [Pg.131]

Cations of weak bases (i.e. Bronsted acids such as the phenylammonium ion C6H5NH3) may be titrated with strong bases, and the treatment is similar. These were formerly regarded as salts of weak bases (e.g. aniline (phenylamine), Kb = 4.0 x 10 10) and strong acids an example is aniline hydrochloride (phenylammonium chloride). [Pg.279]

B Boric acid acts as a Lewis acid. The boron atom in B(OH)3 has an incomplete octet and forms a bond by accepting a lone pair of electrons from a water molecule, which is acting as a Lewis base. The complex formed is a weak Bronsted acid in which an acidic proton can be lost from the H20 molecule in the complex. [Pg.979]

The isomorphic substituted aluminum atom within the zeolite framework has a negative charge that is compensated by a counterion. When the counterion is a proton, a Bronsted acid site is created. Moreover, framework oxygen atoms can give rise to weak Lewis base activity. Noble metal ions can be introduced by ion exchanging the cations after synthesis. Incorporation of metals like Ti, V, Fe, and Cr in the framework can provide the zeolite with activity for redox reactions. [Pg.213]

Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are... Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are...
Rising of CO partial pressure resulted in the appearance of a series of absorption bands with v (CO) 2176, 2156 and 2136 cm" in the area of CO stretching vibrations. The band at v (CO) 2176 cm can be attributed to the interaction of CO with weak Bronsted acid sites while the band at v (CO) 2156 cm can be attributed to the complex of CO with non-acid hydroxyl groups. The band with wavenumber v (CO) 2136 cm" can be related to physical-adsorbed CO over Silica. [Pg.89]

Two types of probe molecules have been used for the detection of Lewis and Bronsted acid sites. The first involves the adsorption of relatively strong basic molecules such as pyridine, ammonia, quinoline, and diazines. The second kind involves the adsorption of weak base molecules such as CO, NO, acetone, acetonitrile, and olefins. The pioneering works of Parry27 and Hughes and... [Pg.50]

Addition of weak Bronsted acids (AH) results in a striking improvement of the catalytic efficiency, as exemplified in Figure 4.6 by three weak acids of increasing H-bonding ability pyrrolidone, 1-propanol, and trifluoroethanol. [Pg.260]

The product is exclusively carbon monoxide, and good turnover numbers are found in preparative-scale electrolysis. Analysis of the reaction orders in CO2 and AH suggests the mechanism depicted in Scheme 4.6. After generation of the iron(O) complex, the first step in the catalytic reaction is the formation of an adduct with one molecule of CO2. Only one form of the resulting complex is shown in the scheme. Other forms may result from the attack of CO2 on the porphyrin, since all the electronic density is not necessarily concentrated on the iron atom [an iron(I) anion radical and an iron(II) di-anion mesomeric forms may mix to some extent with the form shown in the scheme, in which all the electronic density is located on iron]. Addition of a weak Bronsted acid stabilizes the iron(II) carbene-like structure of the adduct, which then produces the carbon monoxide complex after elimination of a water molecule. The formation of carbon monoxide, which is the only electrolysis product, also appears in the cyclic voltammogram. The anodic peak 2a, corresponding to the reoxidation of iron(II) into iron(III) is indeed shifted toward a more negative value, 2a, as it is when CO is added to the solution. [Pg.262]

The first hydration step was promoted by Bronsted acids containing weakly or noncoordinating anions. In the second step, an intramolecular hydrogen transfer in the secondary alcohol was catalyzed by ruthenium(III) salts with chelating bipyridyl-type ligands. The possible complexation of the latter with the diene did not inhibit its catalytic activity in the allylic rearrangements, under acid-catalyzed hydration conditions. [Pg.551]

Most of the catalytic interest in the AlP04-based molecular sieves have centered on the SAPOs which have weak to moderate Bronsted acidity, and two have been commerciahzed SAPO-11 in lube oil dewaxing by Ghevron and SAPO-34 in methanol-to-olefins conversion by UOP/Norsk Hydro. Spurred on by the success of TS-1 in oxidation catalysis, there is renewed interest in Ti, Co, V, Mn and Cr substituted AlP04-based materials, for a review of recent developments in the AlP04-based molecular sieves see [35]. [Pg.10]

More synthetic interest is generated by the potentially very useful hydration of dienes. As shown on Scheme 9.6, methylethylketone (MEK) can be produced from the relatively cheap and easily available 1,3-butadiene with combined catalysis by an acid and a transition metal catalyst. Ruthenium complexes of several N-N chelating Hgands (mostly of the phenanthroline and bipyridine type) were found active for this transformation in the presence of Bronsted acids with weakly coordinating anions, typically p-toluenesulfonic acid, TsOH [18,19]. In favourable cases 90 % yield of MEK, based on butadiene, could be obtained. [Pg.223]

Another example is the separation of several sulfonamides in acetonitrile by adding silver ions. Compounds such as N-containing heterocyclics were found to build selective charge transfer complexes with Ag+, which improves the selectivity of the separation. Phenols, carboxylic acids, and alcohols interact with anions such as CIO, BE, NO, Cl t,SO , and Cl in acetonitrile as solvent. The resulting electrophoretic mobility of the weak Bronsted acids (HA) in the presence of such anions is the result of the formation of complexes of the type [X. .. HA] due to the formation of hydrogen bonds (13). [Pg.39]

Lewis bound form with a strong band at 1440 cm together with a weak 1490cm band. This implies that the Bronsted acidity is associated with the strongly bound water and as this water is removed the pyridine becomes coordinated to a Lewis bound site either nearby or at the undercoordinated A1 site produced by the removal of surface bound water. This transformation of Bronsted to Lewis acid centres is well established in catalyst chemistry as the sample... [Pg.88]

Bransted acids (proton donors, HA) have significant influences on the reduction of organic compounds in aprotic solvents. If a weak Bronsted acid like water is added step-wise to the electrolytic solution, the height of the first polarographic wave increases at the expense of that of the second wave (Fig. 8.12). By the addition of a weak acid, the following reactions occur at or near the electrode ... [Pg.251]

All these electrolytes are neutral in Bronsted acid-base properties. Although rather exceptional, an acid, a base, or a pH buffer may be added to the supporting electrolyte of neutral salts. The acid-base system to be selected depends on the purpose of the measurement. We often use trifluoromethanesulfonic acid (CF3S03F1) as a strong acid acetic acid, benzoic acid, or phenol as a weak acid an amine or pyridine as a weak base and tetraalkylammonium hydroxide (ILtNOH) as a strong base. Examples of buffer systems are the mixtures of picric acid and its R4N-salt and amines and their PlCl04-salts. Here, we should note that the acid-base reactions in aprotic solvents considerably differ from those in water, as discussed in Chapter 3. [Pg.308]


See other pages where Bronsted acids, weak is mentioned: [Pg.747]    [Pg.758]    [Pg.82]    [Pg.489]    [Pg.483]    [Pg.93]    [Pg.109]    [Pg.124]    [Pg.259]    [Pg.323]    [Pg.347]    [Pg.394]    [Pg.80]    [Pg.259]    [Pg.49]    [Pg.131]    [Pg.137]    [Pg.420]    [Pg.511]    [Pg.350]    [Pg.241]    [Pg.129]    [Pg.178]    [Pg.192]    [Pg.302]    [Pg.153]    [Pg.137]    [Pg.251]    [Pg.685]    [Pg.469]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Bronsted acid

Bronsted acidity

Strengths of Weak Bronsted Acids

Weak acids

Weakly acidic

© 2024 chempedia.info