Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water vapor corrosion

Chemical stability of the membrane material is another key point. In order to run the reforming reaction at a low temperature without significant coke formation, the amount of steam in the reforming mixture must be reasonably high. Hence the membrane material must be stable against the water vapor corrosion. However, water vapor is not the only corrosive medium inside the reformer. Gases such as CO, CO2 as well as H2 can also react with membrane materials and destroy their microstructure. Reactions between catalyst/catalyst-additives and membrane materials are possible as well. All these possibilities demand membrane materials with... [Pg.287]

Ferritic stainless steels depend on chromium for high temperature corrosion resistance. A Cr202 scale may form on an alloy above 600°C when the chromium content is ca 13 wt % (36,37). This scale has excellent protective properties and occurs iu the form of a very thin layer containing up to 2 wt % iron. At chromium contents above 19 wt % the metal loss owiag to oxidation at 950°C is quite small. Such alloys also are quite resistant to attack by water vapor at 600°C (38). Isothermal oxidation resistance for some ferritic stainless steels has been reported after 10,000 h at 815°C (39). Grades 410 and 430, with 11.5—13.5 wt % Cr and 14—18 wt % Cr, respectively, behaved significandy better than type 409 which has a chromium content of 11 wt %. [Pg.118]

When moisture films are formed, water vapor can accelerate the corrosion rate. Hence, it is necessary to maintain the temperature above the dew point of the gas mixture by at least 20°C, to prevent the formation of moisture films. A temperature of 130°C or above, at atmospheric pressure, can be used for all mixtures of HCl gas and water vapor because the a2eotropic boiling point is 108.6°C. The boiling point of a2eotropic mixtures can be used as a guide at other pressures (see Table 6). [Pg.446]

The corrosion behavior of plutonium metal has been summarized (60,61). a-Plutonium oxidizes very slowly in dry air, typically <10 mm/yr. The rate is accelerated by water vapor. Thus, a bright metal surface tarnishes rapidly in normal environments and a powdery surface soon forms. Eventually green PUO2 [12059-95-9] covers the surface. Plutonium is similar to uranium with respect to corrosion characteristics. The stabilization of 5-Pu confers substantial corrosion resistance to Pu in the same way that stabilization of y-U yields a more corrosion-resistant metal. The reaction of Pu metal with Hquid water produces both oxides and oxide-hydrides (62). The reaction with water vapor above 100°C also produces oxides and hydride (63). [Pg.196]

An interesting and novel use of a soHd desiccant, the reduction of cold condensate corrosion in automotive exhaust systems, illustrates a hybrid closed—open system. Internal corrosion occurs in mufflers when the water vapor in the exhaust condenses after the engine is turned off and the muffler cools. Carbon dioxide dissolves in the condensate to form an acidic soup. In an essentially closed static drying step, an acid- and heat-resistant desiccant located in the muffler adsorbs water vapor from the exhaust gas as it cools to prevent formation of corrosive acidic condensate. When the engine is restarted, the system becomes open, and the desiccant is regenerated by the hot exhaust gas to be ready for the next cooldown step (19). [Pg.510]

Some units have been built and successbilly operated with simple slot-type distributors made of heat-resistant steel. This requires a heat-resistant plenum chamber but eliminates the frequently encountered problem of corrosion caused by condensation of acids and water vapor on the cold metal of the distributor. [Pg.1565]

Corrosion products and deposits. All sulfate reducers produce metal sulfides as corrosion products. Sulfide usually lines pits or is entrapped in material just above the pit surface. When freshly corroded surfaces are exposed to hydrochloric acid, the rotten-egg odor of hydrogen sulfide is easily detected. Rapid, spontaneous decomposition of metal sulfides occurs after sample removal, as water vapor in the air adsorbs onto metal surfaces and reacts with the metal sulfide. The metal sulfides are slowly converted to hydrogen sulfide gas, eventually removing all traces of sulfide (Fig. 6.11). Therefore, only freshly corroded surfaces contain appreciable sulfide. More sensitive spot tests using sodium azide are often successful at detecting metal sulfides at very low concentrations on surfaces. [Pg.134]

Standard materials are chosen to resist ordinary corrosion of steam and water. If corrosive vapors or liquids are involved, state under special material customer has found best for his operation. Is export packing required ... [Pg.201]

Gas-Fired water heaters are also made more efficient by a variety of designs that increase the recov-ei y efficiency. These can be better flue baffles multiple, smaller-diameter flues submerged combustion chambers and improved combustion chamber geometry. All of these methods increase the heat transfer from the flame and flue gases to the water in the tank. Because natural draft systems rely on the buoyancy of combustion products, there is a limit to the recovery efficiency. If too much heat is removed from the flue gases, the water heater won t vent properly. Another problem, if the flue gases are too cool, is that the water vapor in the combustion products will condense in the venting system. This will lead to corrosion in the chimney and possible safety problems. [Pg.1217]

The main febricated parts of the units are carbon steel, with suitable corrosion allowance for the conditions of the chilled and condensing water. When brackish or sea water is used in a barometric condenser, steel construction with a V4 -in. to -in. corrosion allowance is suggested, and minimum wall plates of V2 -in. to -in. may be justified. Internal splash plates should be V2 -in. to -in. minimum, because the atmosphere of water vapor-air is very corrosive. Alloy construction is not justified except in exceptional cases. [Pg.291]

Far greater potential exists for gas-fired economizers, since the gas is virtually free of sulfur. The limitation on gas temperature is the ability of the water to extract the heat, although the water vapor in the gas caused by the combustion of hydrogen does give rise to a water dewpoint at 55°C. This should be avoided, since general corrosion can take place in the latter rows of the economizer and in the exhaust gas ducts and chimney. Normally, this only occurs for short periods during starting from cold, but it should be minimized. [Pg.386]

Condensing economizers are constructed from corrosion-resistant materials (notably aluminum or stainless steel), since the condensed water vapor in the gas is slightly acidic (typically, with a pH of 3-5). This is... [Pg.391]

Corrosive species in the atmospheres include water, salts and gases. Clean atmospheres contain little other than oxygen, nitrogen, water vapor and a small quantity of carbon dioxide. These species are virtually non-corrosive to any of the common constructional materials for plant at normal temperatures. Steel is susceptible to corrosion in even fairly clean air where water can exist as liquid. For plant operating at temperatures up to approximately 100°C coatings are employed to protect steel if required. In clean air corrosion rates are low, and corrosion is primarily a cosmetic problem, although it may be necessary to prevent mst staining of nearby materials. [Pg.902]

Friction factor in long steel pipes handling wet (saturated with water vapor) gases such as hydrogen, carbon monoxide, carbon dioxide, nitrogen, oxygen and similar materials should be considered carefully, and often increased by a factor of 1.2 to 2.0 to account for corrosion. [Pg.68]

Because sulfur trioxide forms a corrosive acid mist with water vapor, it is absorbed instead in 98% concentrated sulfuric acid to give the dense, oily liquid called oleum ... [Pg.758]

A laboratory can sometimes save money by building a simple hood where no hazardous, flammable, or corrosive fumes are involved. In one case, a hood was needed solely for drawing off unpleasant fumes from a muffle furnace and water vapor. A carpenter constructed a plywood box which reached from counter top to ceiling and had a large opening in the front. This was painted with a resistant paint, primarily to seal the surfaces and make them easy to clean. An inexpensive fan exhausted the hood to the outside. This simple hood worked for many years. [Pg.84]

For all these reasons, the stability of the superconducting state and ways to control it are questions of prime importance. Many studies have addressed the degradation of the properties of HTSC under the influence of a variety of factors. They included more particularly the corrosion resistance of HTSC materials exposed to aqueous and nonaqueous electrolyte solutions as well as to water vapor and the vapors of other solvents. It was seen that the corrosion resistance depends strongly both on the nature (chemical composition, structure, etc.) of the HTSC materials themselves and on the nature of the aggressive medium. [Pg.631]

The split between the radiant and convection section heat varies according to the design. Casing losses are usually between 1 and 3% of the heat release from combustion. The heat loss from the stack is constrained by the desire to avoid any condensation of water vapor in the convection section. If there is any sulfur present in the fuel, then the condensate will be corrosive. The temperature at which the flue gas starts to condense is the acid dew point. For sulfurbearing fuels, the temperature of the flue gas is normally... [Pg.348]

Water, whether as a liquid, moisture in the soil, or water vapor in the atmosphere, is essential for corrosion processes to take place. Under dry environmental conditions most metals and alloys are resistant to corrosion. The more humidity there is at a site, the more active are the corrosion processes. Some metals and alloys that are resistant to corrosion under dry conditions rapidly corrode under humid or wet conditions, particularly, in the presence of pollutants. Depending on their susceptibility to corrosion processes, the metals and alloys can be divided into three groups ... [Pg.216]

Corrosion reactions of a metal with gaseous species such as oxygen, chlorine, sulfur containing molecules or water vapor to produce a thin layer of product phase are typical of ambipolar diffusion reactions. For example, metal oxidation... [Pg.241]

As stated, the capability of plasma deposits to reduce the access of water to corrosion-sensitive surfaces may be an important motivation for their application in corrosion protection. In order to study this property, Kapton polyimide film was selected as the substrate because of its high inherent permeability to water and its ability to resist elevated temperatures. The response of Kapton film overcoated by PPHMDSO to the permeation of water vapor is shown in Fig. 1. Clearly, the presence of the organo-silicone plasma film greatly reduces water permeation. The magnitude of the effect is much enhanced when plasma polymers are produced at high T and p. [Pg.293]


See other pages where Water vapor corrosion is mentioned: [Pg.171]    [Pg.115]    [Pg.115]    [Pg.41]    [Pg.211]    [Pg.242]    [Pg.247]    [Pg.527]    [Pg.195]    [Pg.124]    [Pg.1080]    [Pg.153]    [Pg.4]    [Pg.1217]    [Pg.1338]    [Pg.390]    [Pg.898]    [Pg.82]    [Pg.214]    [Pg.435]    [Pg.45]    [Pg.389]    [Pg.36]    [Pg.191]    [Pg.195]    [Pg.9]    [Pg.142]    [Pg.278]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Corrosive vapors

High-temperature corrosion water vapor

Water corrosion

Water corrosivity

Water vapor

Water vaporization

Water: corrosiveness

© 2024 chempedia.info