Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Economizers condensing

For pumping larger quantities of water vapor, the condenser is the most economical pump. As a rule, the condenser is cooled with water of such temperature that the condenser temperature lies sufficiently below the dew point of the water vapor and an economical condensation or pumping action is guaranteed. For cooling, however, media such as brine and refrigerants (NFIj, Freon ) can also be used. [Pg.38]

Liquefaction process design requires the choice of a combination of temperature and pressure at which chlorine can be economically condensed. There is a tradeoff... [Pg.830]

Gas is produced to surface separators which are used to extract the heavier ends of the mixture (typically the components). The dry gas is then compressed and reinjected into the reservoir to maintain the pressure above the dew point. As the recycling progresses the reservoir composition becomes leaner (less heavy components), until eventually it is not economic to separate and compress the dry gas, at which point the reservoir pressure is blown down as for a wet gas reservoir. The sales profile for a recycling scheme consists of early sales of condensate liquids and delayed sale of gas. An alternative method of keeping the reservoir above the dew point but avoiding the deferred gas sales is by water injection. [Pg.103]

When gases are rich in ethane, propane, butane and heavier hydrocarbons and there is a local market for such products it may be economic to recover these condensable components. Natural gas liquids can be recovered in a number of ways, some of which have already been described in the previous section. However to maximise recovery of the individual NGL components, gas would have to be processed in a fractionation plant. [Pg.255]

To obtain a maximum yield of the acid it is necessary to hydrolyse the by-product, iaoamyl iaovalerate this is most economically effected with methyl alcoholic sodium hydroxide. Place a mixture of 20 g. of sodium hydroxide pellets, 25 ml. of water and 225 ml. of methyl alcohol in a 500 ml. round-bottomed flask fitted with a reflux (double surface) condenser, warm until the sodium hydroxide dissolves, add the ester layer and reflux the mixture for a period of 15 minutes. Rearrange the flask for distillation (Fig. II, 13, 3) and distil off the methyl alcohol until the residue becomes pasty. Then add about 200 ml. of water and continue the distfllation until the temperature reaches 98-100°. Pour the residue in the flask, consisting of an aqueous solution of sodium iaovalerate, into a 600 ml. beaker and add sufficient water to dissolve any solid which separates. Add slowly, with stirring, a solution of 15 ml. of concentrated sulphuric acid in 50 ml. of water, and extract the hberated acid with 25 ml. of carbon tetrachloride. Combine this extract with extract (A), dry with a httle anhydrous magnesium or calcium sulphate, and distil off the carbon tetrachloride (Fig. II, 13, 4 150 ml. distiUing or Claisen flask), and then distil the residue. Collect the wovaleric acid 172-176°. The yield is 56 g. [Pg.356]

If condensation requires gas stream cooling of more than 40—50°C, the rate of heat transfer may appreciably exceed the rate of mass transfer and a condensate fog may form. Fog seldom occurs in direct-contact condensers because of the close proximity of the bulk of the gas to the cold-Hquid droplets. When fog formation is unavoidable, it may be removed with a high efficiency mist collector designed for 0.5—5-p.m droplets. Collectors using Brownian diffusion are usually quite economical. If atmospheric condensation and a visible plume are to be avoided, the condenser must cool the gas sufftciendy to preclude further condensation in the atmosphere. [Pg.389]

Several types of fluids are used as refrigerants in mechanical compression systems ammonia, halocarbon compounds, hydrocarbons, carbon dioxide, sulfur dioxide, and cryogenic fluids. A wide temperature range therefore is afforded. These fluids boil and condense isotherm ally. The optimum temperature or pressure at which each can be used can be deterrnined from the economics of the system. The optimum refrigerant can be deterrnined only... [Pg.508]

A wide variety of turbine types and arrangements are used in modem power plants. For example, some smaH industrial plants may use only a single condensing turbine. Prepackaged steam/turbine generator systems can be economical for small-to-midsize instaHations. [Pg.7]

Condenser and eboiler AT. The losses for AT are typically far greater than those for reflux beyond the minimum. The economic optimum for temperature differential is usually under 15°C, in contrast to the values of over 50°C often used in the past. This is probably the biggest opportunity for improvement in the practice of distillation. A specific example is the replacement of direct-fired reboilers with steam (qv) heat. [Pg.85]

Propane, 1-propanol, and heavy ends (the last are made by aldol condensation) are minor by-products of the hydroformylation step. A number of transition-metal carbonyls (qv), eg, Co, Fe, Ni, Rh, and Ir, have been used to cataly2e the oxo reaction, but cobalt and rhodium are the only economically practical choices. In the United States, Texas Eastman, Union Carbide, and Hoechst Celanese make 1-propanol by oxo technology (11). Texas Eastman, which had used conventional cobalt oxo technology with an HCo(CO)4 catalyst, switched to a phosphine-modified Rh catalyst ia 1989 (11) (see Oxo process). In Europe, 1-propanol is made by Hoechst AG and BASE AG (12). [Pg.118]


See other pages where Economizers condensing is mentioned: [Pg.54]    [Pg.226]    [Pg.916]    [Pg.226]    [Pg.54]    [Pg.2669]    [Pg.2648]    [Pg.327]    [Pg.54]    [Pg.226]    [Pg.916]    [Pg.226]    [Pg.54]    [Pg.2669]    [Pg.2648]    [Pg.327]    [Pg.109]    [Pg.413]    [Pg.413]    [Pg.69]    [Pg.140]    [Pg.386]    [Pg.388]    [Pg.172]    [Pg.502]    [Pg.502]    [Pg.509]    [Pg.11]    [Pg.428]    [Pg.471]    [Pg.514]    [Pg.516]    [Pg.386]    [Pg.389]    [Pg.172]    [Pg.223]    [Pg.399]    [Pg.484]    [Pg.240]    [Pg.332]    [Pg.157]    [Pg.350]    [Pg.90]    [Pg.528]    [Pg.562]    [Pg.66]    [Pg.67]   


SEARCH



© 2024 chempedia.info