Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Water transport methods

Water Transport. Two methods of measuring water-vapor transmission rates (WVTR) ate commonly used. The newer method uses a Permatran-W (Modem Controls, Inc.). In this method a film sample is clamped over a saturated salt solution, which generates the desired humidity. Dry air sweeps past the other side of the film and past an infrared detector, which measures the water concentration in the gas. For a caUbrated flow rate of air, the rate of water addition can be calculated from the observed concentration in the sweep gas. From the steady-state rate, the WVTR can be calculated. In principle, the diffusion coefficient could be deterrnined by the method outlined in the previous section. However, only the steady-state region of the response is serviceable. Many different salt solutions can be used to make measurements at selected humidity differences however, in practice,... [Pg.500]

Department of Transportation - has sponsored work on air, ground, rail, and water transportation, using PSA methods. [Pg.17]

Less-than-carload-lol rates are very higli. Therefore, the distance that the material must be shipped should be kept to a minimum. Each of the four major transportation methods in use today (railroad freight, trucking, water transport, and air travel) has its benefits and drawbacks. [Pg.166]

Quantitative estimation of ventilation by indirect methods in mussels requires four assumptions (16) a) reduction of concentration results from uptake, b) constant ventilation (pumping) rate, c) uptake of a constant percentage of concentration (first order process), d) homogeneity of the test solution at all times. Our transport studies have utilized antipy-rine (22, 23) a water soluble, stable chemical of low acute toxicity to mussels. It is readily dissolved in ocean water or Instant Ocean and is neither adsorbed nor volatilized from the 300 ml test system. Mussels pump throughout the 4 hour test period and this action is apparently sufficient to insure homogeneity of the solution. Inspection of early uptake and elimination curves (antipyrine concentration as a function of time) prompted use of Coughlan s equation (16) for water transport. [Pg.263]

Although the sputter deposition technique can provide a cheap and directly controlled deposition method, the performance of PEM fuel cells with sputtered CLs is still inferior to that of conventional ink-based fuel cells. In addition, other issues arise related to the physical properties of sputtered catalyst layers, such as low lateral electrical conductivity of the thin metallic films [96,108]. Furthermore, the smaller particle size of sputter-deposited Ft can hinder water transport because of the high resistance to water transport in a thick, dense, sputtered Ft layer [108]. Currently, the sputter deposition method is not considered an economically viable alternative for large-scale electrode fabrication [82] and further research is underway to improve methods. [Pg.87]

To shed some light on these issues and to be able to have a better understanding of the water transport when using MPLs, Atiyeh et al. [152] presented an experimental method designed to investigate the net water drag coefficient in order to have a better indication of the amount of water flowing from fhe cathode to the anode. They observed that the performance of fhe fuel cell improved when the anode, the cathode, or both had microporous layers. [Pg.239]

Accumulation of water inside the DLs and CLs may cause serious failure modes that can significantly deteriorate the performance and lifetime of a fuel cell. To ensure appropriate water removal, it is vital to understand the water transport mechanism inside a fuel cell, especially in the DLs. Because CFP and CC contain complex structures and porosities, many researchers have developed methods that could facilitate the characterization and design of optimal diffusion layers with proper water removal capabilities. A lot of work has also been performed on mathematical models that attempt to analyze the water flooding and transport inside DLs. A comprehensive review describing these models can be found in Sinha, Mukherjee, and Wang [222]. This section will discuss only examples of the experimental techniques. [Pg.267]

After the tests, Djilali s group used mathematical assumptions and equations to correlate the intensity of the dye in the image with the depth in the gas diffusion layer. With this method they were able to study the effect of compression on diffusion layers and how fhaf affects water transport. Water removal in a flow charmel has also been probed with this technique and it was observed that, with a dry DL slug, formation and flooding in the FF channels followed the appearance and detachment of water droplets from the DL. Even though this is an ex situ technique, it provides important insight into water transport mechanisms with different DLs and locations. [Pg.270]

Water Transport. Two methods of measuring water-vapor transmission rates (WVTR) are commonly used. The newer method uses a Permatran-W (Modern Controls, Inc.). The other method is the ASTM cup method. [Pg.175]

The q-space imaging method, which deals with signals only after long diffusion times, discards all information relevant to dynamic aspects of water diffusion and transport, especially the restriction of water transport by membrane and cell wall permeability barriers in cellular tissues. This information is contained in the functional dependence of the pulsed gradient spin echo amplitude S(q,A,x) on the three independent variables q, A, and x (x is the 90-180 degree pulse spacing) [53]. As the tool to explore the q and A dependence of S(q,A,x), generalized diffusion times and their associated fractional populations are introduced and a multiple exponential time series expansion is used to analyze the dependence [53]. [Pg.133]

In PEMFC systems, water is transported in both transversal and lateral direction in the cells. A polymer electrolyte membrane (PEM) separates the anode and the cathode compartments, however water is inherently transported between these two electrodes by absorption, desorption and diffusion of water in the membrane.5,6 In operational fuel cells, water is also transported by an electro-osmotic effect and thus transversal water content distribution in the membrane is determined as a result of coupled water transport processes including diffusion, electro-osmosis, pressure-driven convection and interfacial mass transfer. To establish water management method in PEMFCs, it is strongly needed to obtain fundamental understandings on water transport in the cells. [Pg.202]

The mesoscopic modeling approach consists of a stochastic reconstruction method for the generation of the CL and GDL microstructures, and a two-phase lattice Boltzmann method for studying liquid water transport and flooding phenomena in the reconstructed microstructures. [Pg.258]

ED appears to be an inefficient method to recover free citric acid because of its low electric conductivity (Novalic et al., 1995). As it is converted into the monovalent (at pH ca. 3), divalent (at pH ca. 5), or trivalent (at pH about 7) citrate anion, there is a significant increase in the electric conductivity (%), the latter increasing from 0.95 to 2.18 and to 3.9 S/m, respectively, in the case of an aqueous solution containing 50 kg/m3 of citric acid equivalent (Moresi and Sappino, 1998). By increasing the pH from 3 to 7, e reduced about eight times, the solute flux (JB) practically doubled, while the overall water transport (/w) increased 3-4 times. The latter partly counterbalanced the greater effectiveness of the electrodialytic concentration of citric acid at pH 7 with respect to that at pH 3. Table XV presents a summary of the effect of current density ( j) on the main performance indicators of the electrodialytic recovery of the monovalent, divalent, or trivalent ionic fractions of citric acid (Moresi and Sappino, 1998). All the mean values or empirical correlations of the earlier indicators were useful to evaluate the economic feasibility of this separation technique (Moresi and Sappino, 2000). [Pg.331]

Looking at the barrier in more detail, we find that it can be described as composed of two main components. Interspersed between the corneocytes we find the hydrophobic (water-repellent) substance, the barrier lipids. The keratinized corneocytes containing fibrous and amorphous proteins represent a hydrophilic (water-attracting) component. Neutral lipids (fatty acids, cholesterol) and ceramides dominate the lipid phase, and it is mainly these lipids that are responsible for the control and limitation of water transport through the skin.14 Visualization of the penetration pathway through the skin by tracer methods has demonstrated that the extracellular pathway is likely to be the only route through the barrier for substances other than water.15 Water diffusion through the keratinocytes... [Pg.12]

Figure 6.21 shows the AC impedance spectra for the cathodic ORR of the cell electrodes prepared using the conventional method and the sputtering method. It can be seen that the spectra of electrodes 2 and 3 do not indicate mass transport limitation at either potentials. For electrode 1, a low-frequency arc develops, due to polarization caused by water transport in the membrane. It is also observable that the high-frequency arc for the porous electrode is significantly depressed from the typical semicircular shape. Nevertheless, the real-axis component of the arc roughly represents the effective charge-transfer resistance, which is a function of both the real surface area of the electrode and the surface concentrations of the species involved in the electrode reaction. [Pg.285]


See other pages where Water transport methods is mentioned: [Pg.655]    [Pg.395]    [Pg.9]    [Pg.2227]    [Pg.354]    [Pg.304]    [Pg.98]    [Pg.201]    [Pg.669]    [Pg.5]    [Pg.254]    [Pg.269]    [Pg.394]    [Pg.218]    [Pg.298]    [Pg.35]    [Pg.36]    [Pg.37]    [Pg.39]    [Pg.248]    [Pg.387]    [Pg.392]    [Pg.307]    [Pg.97]    [Pg.34]    [Pg.340]    [Pg.76]    [Pg.244]    [Pg.35]    [Pg.163]    [Pg.1983]    [Pg.251]    [Pg.271]    [Pg.207]    [Pg.115]   
See also in sourсe #XX -- [ Pg.30 , Pg.31 , Pg.32 , Pg.33 , Pg.34 , Pg.35 , Pg.36 , Pg.37 ]




SEARCH



Transport method

Transportation methods

Water transport

Water transport radioactive methods

Water transportation

© 2024 chempedia.info