Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Waste fission

World-wide the production of energy by nuclear power amounts to about 470 GWe (1995) and increases by about 4% per year, although the problems with respect to the storage of the radioactive waste (fission products and actinides) are not yet solved in a satisfactory way. [Pg.217]

All isotopes of technetium are unstable toward ft decay or electron capture and traces exist in Nature only as fragments from the spontaneous fission of uranium. The element was named technetium by the discoverers of the first radioisotope—Perrier and Segre. Three isotopes have half-lives greater than 105 years, but the only one that has been obtained on a macro scale is "Tc (fi, 2.12xl05 years). Technetium is recovered from waste fission-product solutions after removal of plutonium and uranium. It is an interesting irony that the supply of technetium, which does not exist in Nature, might easily be made to exceed that of Re, which does, because of the increasing number of reactors and the very low ( 10-9%) abundance of Re in the earth s crust. [Pg.974]

Henley, E. J. The Chemical Potential of Waste Fission Products, Chem. Eng. Progr. Symposium jSencs, 50(13) 66 (1955). [Pg.495]

Sr, Ce, and Gs are produced from nuclear wastes (fission products). [Pg.2752]

Fission product distribution Radioactive waste activity distribution... [Pg.602]

Potential fusion appHcations other than electricity production have received some study. For example, radiation and high temperature heat from a fusion reactor could be used to produce hydrogen by the electrolysis or radiolysis of water, which could be employed in the synthesis of portable chemical fuels for transportation or industrial use. The transmutation of radioactive actinide wastes from fission reactors may also be feasible. This idea would utilize the neutrons from a fusion reactor to convert hazardous isotopes into more benign and easier-to-handle species. The practicaUty of these concepts requires further analysis. [Pg.156]

Neutron-rich lanthanide isotopes occur in the fission of uranium or plutonium and ate separated during the reprocessing of nuclear fuel wastes (see Nuclearreactors). Lanthanide isotopes can be produced by neutron bombardment, by radioactive decay of neighboring atoms, and by nuclear reactions in accelerators where the rate earths ate bombarded with charged particles. The rare-earth content of solid samples can be determined by neutron... [Pg.541]

As the recycled fuel composition approaches steady state after approximately four cycles (1), the heat and radiation associated with and Pu require more elaborate conversion and fuel fabrication facihties than are needed for virgin fuel. The storage, solidification, packaging, shipping, and disposal considerations associated with wastes that result from this approach are primarily concerned with the relatively short-Hved fission products. The transuranic... [Pg.201]

The throwaway fuel cycle does not recover the energy values present ia the irradiated fuel. Instead, all of the long-Hved actinides are routed to the final waste repository along with the fission products. Whether or not this is a desirable alternative is determined largely by the scope of the evaluation study. For instance, when only the value of the recovered yellow cake and SWU equivalents are considered, the world market values for these commodities do not fully cover the cost of reprocessing (2). However, when costs attributable to the disposal of large quantities of actinides are considered, the classical fuel cycle has been the choice of virtually all countries except the United States. [Pg.202]

Flexi-bil ity Contin-uous operation Fission-product separation U/Pu separation Ease of waste handling ... [Pg.202]

The Natural Reactor. Some two biUion years ago, uranium had a much higher (ca 3%) fraction of U than that of modem times (0.7%). There is a difference in half-hves of the two principal uranium isotopes, U having a half-life of 7.08 x 10 yr and U 4.43 x 10 yr. A natural reactor existed, long before the dinosaurs were extinct and before humans appeared on the earth, in the African state of Gabon, near Oklo. Conditions were favorable for a neutron chain reaction involving only uranium and water. Evidence that this process continued intermittently over thousands of years is provided by concentration measurements of fission products and plutonium isotopes. Usehil information about retention or migration of radioactive wastes can be gleaned from studies of this natural reactor and its products (12). [Pg.222]

Water as coolant in a nuclear reactor is rendered radioactive by neutron irradiation of corrosion products of materials used in reactor constmction. Key nucHdes and the half-Hves in addition to cobalt-60 are nickel-63 [13981 -37-8] (100 yr), niobium-94 [14681-63-1] (2.4 x 10 yr), and nickel-59 [14336-70-0] (7.6 x lO" yr). Occasionally small leaks in fuel rods allow fission products to enter the cooling water. Cleanup of the water results in LLW. Another source of waste is the residue from appHcations of radionucHdes in medical diagnosis, treatment, research, and industry. Many of these radionucHdes are produced in nuclear reactors, especially in Canada. [Pg.228]

Weapons materials from production reactors were accumulated during the Cold War period as a part of the U.S. defense program. Prominent were tritium, ie, hydrogen-3, having a of 12.3 yr, and plutonium-239, 1/2 = 2.4 X lO" yr. The latter constitutes a waste both as a by-product of weapons fabrication in a waste material called transuranic waste (TRU), and as an excess fissionable material if not used for power production in a reactor. [Pg.228]

The primary issue is to prevent groundwater from becoming radioactively contaminated. Thus, the property of concern of the long-lived radioactive species is their solubility in water. The long-lived actinides such as plutonium are metallic and insoluble even if water were to penetrate into the repository. Certain fission-product isotopes such as iodine-129 and technicium-99 are soluble, however, and therefore represent the principal although very low level hazard. Studies of Yucca Mountain, Nevada, tentatively chosen as the site for the spent fuel and high level waste repository, are underway (44). [Pg.242]

Cesium isotopes can be recovered from fission products by digestion in nitric acid, and after filtration of waste the radioactive cesium phosphotungstate is precipitated using phosphotungstic acid. This technique can be used to prepare radioactive cesium metal or compounds. Various processes for removal of Cs isotopes from radioactive waste have been developed including solvent extraction using macrocycHc polyethers (62) or crown ethers (63) and coprecipitation with sodium tetraphenylboron (64). [Pg.379]

Nuclear power reactors cause the transmutation of chemicals (uranium and plutonium) to fission products using neutrons as the catalyst to produce heat. Fossil furnaces use the chemical reaction of carbon and oxygen to produce CO2 and other wastes to produce heat. There is only one reaction and one purpose for nuclear power reactors there is one reaction but many puiposes for fossil-burning furnaces there are myriad chemical processes and purposes. [Pg.261]

Nuclear power production involves bringing fissionable material together to react nuclearly, removing the heat, converting the heat to steam to drive a turbogenerator. and managing the wastes. [Pg.293]

The fear of accidents like Chernobyl, and the high cost of nuclear waste disposal, halted nuclear power plant construction in the United States m the 1980s, and in most ol the rest ol the world by the 1990s. Because nuclear fusion does not present the waste disposal problem of fission reactors, there is hope that fusion will be the primary energy source late in the twenty-first centuiy as the supplies of natural gas and petroleum dwindle. [Pg.481]

See also Acid Rain Air Pollution Atmosphere Carson, Rachel Climatic Effects Disasters Environmental Economics Fossil Fuels Gasoline and Additives Gasoline Engines Government and the Energy Marketplace Nuclear Fission Nuclear Fusion Nuclear Waste. [Pg.483]

Nuclear reactors, however, do generate highly radioactive waste. This waste, which consists primarily of the fission fragments and their radioactive-decay products, must be stored for many years before its radioactivity decays to a reasonable level, and the safe long-term storage of this waste is a matter of great concern and debate. Fortunately, the volume of waste that is created is only about 20 cubic meters annually from a reactor, compared with 200,000 cubic meters of waste ash from a coal-fired plant. When nuclear weapions were tested in the atmosphere, the radioactive products from the nuclear explosions were released into the air and fell to Earth as radioactive fallout. [Pg.849]

Usually atoms resulting from nuclear fission arc radioactive. There are also radioactive atoms produced from neutron capture by both U and U. Both types of radioactive atoms remain in the nuclear fuel. It is these radioactive atoms that comprise the nuclear wastes that require disposal in an environmentally acceptable manner. [Pg.863]

See also Electric Power, Generation of Environmental Problems and Energy Use Explosives and Propellants Meitner, Lise Military Energy Use, Historical Aspects of Molecular Energy Nuclear Energy Nuclear Energy, Historical Evolution of the Use of Nuclear Fission Fuel Nuclear Fusion Nuclear Waste. [Pg.865]

The main drawback to nuclear power is the production of radioactive waste. Spent fuel from a nuclear reactor is considered a high-level radioactive waste, and remains radioactive for a veiy long time. Spent fuel consists of fission products from the U-235 and Pu-239 fission process, and also from unspent U-238, Pu-240, and other heavy metals produced during the fuel cycle. That is why special programs exist for the handling and disposal of nuclear waste. [Pg.870]

HLW comprises most of the radioactivity associated with nuclear waste. Because that designation can cover radioactive waste from more than one source, the term spent nuclear fuel (SNF) will be used to discuss HLW originating from commercial nuclear reactors. LLW comprises nearly 90 percent of the volume of nuclear waste but little of the radioactivity. Nuclear power reactors produce SNF and most of the nation s LLW, although there are approximately 20,000 different sources of LLW. The name SNF is a bit of a misnomer because it implies that there is no useful material left in the fuel, when in fact some fissionable material is left in it. [Pg.879]


See other pages where Waste fission is mentioned: [Pg.397]    [Pg.167]    [Pg.210]    [Pg.66]    [Pg.674]    [Pg.397]    [Pg.167]    [Pg.210]    [Pg.66]    [Pg.674]    [Pg.217]    [Pg.1060]    [Pg.155]    [Pg.179]    [Pg.202]    [Pg.203]    [Pg.205]    [Pg.206]    [Pg.229]    [Pg.241]    [Pg.242]    [Pg.242]    [Pg.201]    [Pg.315]    [Pg.282]    [Pg.158]    [Pg.1097]    [Pg.1257]    [Pg.857]    [Pg.858]    [Pg.870]    [Pg.871]   
See also in sourсe #XX -- [ Pg.136 ]




SEARCH



Fission product waste management, aqueous

Fission products recovery from wastes

Fission, nuclear waste from

Fission-reactor waste disposal

Nuclear waste fission products recovery

Radioactive waste disposal nuclear fission

Wastes, nuclear fission problem

© 2024 chempedia.info