Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fusion reactors

The ordinary isotope of hydrogen, H, is known as Protium, the other two isotopes are Deuterium (a proton and a neutron) and Tritium (a protron and two neutrons). Hydrogen is the only element whose isotopes have been given different names. Deuterium and Tritium are both used as fuel in nuclear fusion reactors. One atom of Deuterium is found in about 6000 ordinary hydrogen atoms. [Pg.5]

Fusion reactors Fusion temperatures Fuzz fibers... [Pg.429]

Fig. 5. Radioactivity after shutdown per watt of thermal power for A, a Hquid-metal fast breeder reactor, and for a D—T fusion reactor made of various stmctural materials B, HT-9 ferritic steel C, V-15Cr-5Ti vanadium—chromium—titanium alloy and D, siUcon carbide, SiC, showing the million-fold advantage of SiC over steel a day after shutdown. The radioactivity level after shutdown is also given for E, a SiC fusion reactor using the neutron reduced... Fig. 5. Radioactivity after shutdown per watt of thermal power for A, a Hquid-metal fast breeder reactor, and for a D—T fusion reactor made of various stmctural materials B, HT-9 ferritic steel C, V-15Cr-5Ti vanadium—chromium—titanium alloy and D, siUcon carbide, SiC, showing the million-fold advantage of SiC over steel a day after shutdown. The radioactivity level after shutdown is also given for E, a SiC fusion reactor using the neutron reduced...
A D—T fusion reactor is expected to have a tritium inventory of a few kilograms. Tritium is a relatively short-Hved (12.36 year half-life) and benign (beta emitter) radioactive material, and represents a radiological ha2ard many orders of magnitude less than does the fuel inventory in a fission reactor. Clearly, however, fusion reactors must be designed to preclude the accidental release of tritium or any other volatile radioactive material. There is no need to have fissile materials present in a fusion reactor, and relatively simple inspection techniques should suffice to prevent any clandestine breeding of fissile materials, eg, for potential weapons diversion. [Pg.156]

Potential fusion appHcations other than electricity production have received some study. For example, radiation and high temperature heat from a fusion reactor could be used to produce hydrogen by the electrolysis or radiolysis of water, which could be employed in the synthesis of portable chemical fuels for transportation or industrial use. The transmutation of radioactive actinide wastes from fission reactors may also be feasible. This idea would utilize the neutrons from a fusion reactor to convert hazardous isotopes into more benign and easier-to-handle species. The practicaUty of these concepts requires further analysis. [Pg.156]

Fusion Reactors. The development of fusion reactors requires a material exhibiting high temperature mechanical strength, resistance to radiation-induced swelling and embrittlement, and compatibUity with hydrogen, lithium and various coolants. One aUoy system that shows promise in this appHcation, as weU as for steam-turbine blades and other appHcations in nonoxidizing atmospheres, is based on the composition (Fe,Co,Ni)2V (30). [Pg.387]

The crystal stmcture of beryUium carbide is cubic, density = 2.44 g/mL. The melting point is 2250—2400°C and the compound dissociates under vacuum at 2100°C (1). This compound is not used industhaUy, but Be2C is a potential first-waU material for fusion reactors, one on the very limited Ust of possible candidates (see Fusion energy). [Pg.75]

In addition, the copper industry s market development activities have resulted in appHcations such as clad ship hulls, sheathing for offshore platforms, automotive electrical systems including electric vehicles, improved automobde radiators, solar energy, fire sprinkler systems, parts for fusion reactors, semiconductor lead frames, shape memory alloys, and superconducting ceramics (qv) containing copper oxides. [Pg.212]

The development of a tritium fuel cycle for fusion reactors is likely to be the focus of tritium chemical research into the twenty-first century. [Pg.16]

Applied Sciences, Inc. has, in the past few years, used the fixed catalyst fiber to fabricate and analyze VGCF-reinforced composites which could be candidate materials for thermal management substrates in high density, high power electronic devices and space power system radiator fins and high performance applications such as plasma facing components in experimental nuclear fusion reactors. These composites include carbon/carbon (CC) composites, polymer matrix composites, and metal matrix composites (MMC). Measurements have been made of thermal conductivity, coefficient of thermal expansion (CTE), tensile strength, and tensile modulus. Representative results are described below. [Pg.147]

Burchell, T.D., and Oku, T., Material properties data for fusion reactor plasma facing carbon-carbon composites. Nuclear Fusion, 1994, 5(Suppl.), 77 128. [Pg.202]

It IS often stated that unclear fusion tvill produce no radioactive hazard, but this is not correct. The most likely fuels for a fusion reactor would be deuterium and radioactive tritium, which arc isotopes of hydrogen. Tritium is a gas, and in the event of a leak it could easily be released into the surrounding environment. The fusion of deuterium and tritium produces neutrons, which would also make the reactor building itself somewhat radioactive. However, the radioactivity produced in a fusion reactor would be much shorter-lived than that from a fission reactor. Although the thermonuclear weapons (that use nuclear fusion), first developed in the 1950s provided the impetus for tremendous worldwide research into nuclear fusion, the science and technology required to control a fusion reaction and develop a commercial fusion reactor are probably still decades away. [Pg.849]

Schematic of a fusion reactor, assuming a generally toroidal shape of the plasma and magnetic fusion. The principles emphasized are central hot core (red) at 100 million degrees, blanket and heat exchanger, shield, energy conversion, and the handling of D, T, and the "ash" He. Schematic of a fusion reactor, assuming a generally toroidal shape of the plasma and magnetic fusion. The principles emphasized are central hot core (red) at 100 million degrees, blanket and heat exchanger, shield, energy conversion, and the handling of D, T, and the "ash" He.
Sheffield, J. (1994). The Physics of Magnetic Fusion Reactors. Reviews of Modern Physics 66 1015-1103. [Pg.878]

Also in 1950 Sakliarov and Tamm proposed an idea for a controlled thermonuclear fusion reactor, the TOKAMAK (acronym for the Russian phrase for toroidal chamber with magnetic coiF ), which achieved the highest ratio of output power to input power of any fusion device of the twentieth centuiy. This reactor grew out of interest in a controlled nuclear fusion reaction, since 1950. Sakharov first considered electrostatic confinement, but soon came to the idea of magnetic confinement. Tamm joined the effort with his work on particle motion in a magnetic field, including cyclotron motion, drifts, and magnetic surfaces. Sakharov and Tamm realized that... [Pg.1024]

One possible way to achieve nuclear fusion is to use magnetic fields to confine the reactant nuclei and prevent them from touching the walls of the container, where they would quickly slow down below the velocity required for fusion. Using 400-ton magnets, it is possible to sustain the reaction for a fraction of a second. To achieve a net evolution of energy, this time must be extended to about one second. A practical fusion reactor would have to produce 20 times as much energy as it consumes. Optimists predict that this goal may be reached in 50 years. [Pg.527]

In April, 1997, the Tokomac fusion reactor at Princeton shut down when government funding was withdrawn. [Pg.527]


See other pages where Fusion reactors is mentioned: [Pg.2794]    [Pg.35]    [Pg.150]    [Pg.150]    [Pg.151]    [Pg.155]    [Pg.16]    [Pg.128]    [Pg.225]    [Pg.227]    [Pg.435]    [Pg.204]    [Pg.198]    [Pg.111]    [Pg.9]    [Pg.15]    [Pg.405]    [Pg.465]    [Pg.2]    [Pg.780]    [Pg.849]    [Pg.857]    [Pg.873]    [Pg.874]    [Pg.874]    [Pg.840]    [Pg.7]    [Pg.89]    [Pg.151]   
See also in sourсe #XX -- [ Pg.6 , Pg.254 ]

See also in sourсe #XX -- [ Pg.117 , Pg.118 , Pg.129 , Pg.132 , Pg.134 ]

See also in sourсe #XX -- [ Pg.293 ]

See also in sourсe #XX -- [ Pg.312 ]

See also in sourсe #XX -- [ Pg.321 , Pg.336 ]

See also in sourсe #XX -- [ Pg.1194 ]




SEARCH



© 2024 chempedia.info