Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Waste disposal, radioactive materials

The vendor also claims that RadAway can effectively separate mixed waste—waste containing radioactive materials and hazardous solvents. This separation allows the solvent to be disposed of separately from the radioactive component, greatly reducing disposal costs. However, RadAway does not have regulatory approval for mixed waste. [Pg.809]

Concerns over safe handling of radioactive materials and issues around the cost and disposal of low level radioactive waste has stimulated the development of nonradiometric products and technologies with the aim of replacing radioactive tracers in research and medical diagnosis (25). However, for many of the appHcations described, radioactive tracer technology is expected to continue to be widely used because of its sensitivity and specificity when compared with colorimetric, fluorescent, or chemiluminescent detection methods. [Pg.440]

Thermosetting Reactive Polymers. Materials used as thermosetting polymers include reactive monomers such as urea—formaldehyde, phenoHcs, polyesters, epoxides, and vinyls, which form a polymerized material when mixed with a catalyst. The treated waste forms a sponge-like material which traps the soHd particles, but not the Hquid fraction the waste must usually be dried and placed in containers for disposal. Because the urea—formaldehyde catalysts are strongly acidic, urea-based materials are generally not suitable for metals that can leach in the untrapped Hquid fractions. Thermosetting processes have greater utiHty for radioactive materials and acid wastes. [Pg.165]

Technology Descriptions The use of thermoplastic solidification systems in radioactive waste disposal has led to the development of waste containment systems that can be adapted to industrial waste. In processing radioactive waste with bitumen or other thermoplastic material (such as paraffin or polyethylene), the waste is dried, heated and dispersed through a heated, plastic matrix. The mixture is then cooled to solidify the mass. [Pg.182]

Waste management is a field that involves tlie reduction, stabilization, and ultimate disposal of waste. Waste reduction is tlie practice of minimizing file amount of material tliat requires disposal. Some of the common ways in which waste reduction is accomplished are incineration, compaction, and dewatering. The object of waste disposal is to isolate tlie material from tlie biosphere, and in the case of radioactive wtiste, allow it time to decay to sufficiently safe levels. [Pg.193]

FIGURE 17.30 This 35-year-old drum of radioactive waste has corroded and leaked radioactive materials into the soil. The drum was located in one of the nuclear waste disposal sites at the U.S. Department of Energy s Hanford, Washington, nuclear manufacturing and research facility. Several storage sites at this facility have become seriously contaminated. [Pg.842]

The laboratory operator must make a careful examination of all wastes that will be generated and, from this, work up a waste disposal system. Some wastes may be compatible and could be disposed of together. Others could react and thus cause problems. Flammables must be given special attention. Certain biological wastes may be very hazardous even in small quantities. Special rules apply to radioactive materials, even in the small amounts used for investigative purposes. [Pg.58]

The level of radioactivity encountered in the usual radioimmunoassay procedures is low enough so that liquid wastes may be disposed of in the sink with running water. In calculating the amount of radioactive material that may be disposed of via the sewage system from one building, one must know the water usage. This may be obtained from the water bill. The allowable quantity of in sewage is 4.0 x 10" /ii Ci/ml of water... [Pg.67]

Biotic Transport Biotic transport can be defined as the actions of plants and animals that result in the transport of a radioactive material or other substance from a waste site to locations where it can enter pathways that may result in exposure to humans. Small mammals are ubiquitous and inhabit areas containing radioactive contamination or radioactive waste sites. Mammals inhabiting these areas may become contaminated with americium by consuming contaminated soil or plants and disturb americium-contaminated soil through their burrowing and excavating activities. These animals may therefore affect the distribution of americium within the waste site or transport americium to previously uncontaminated areas. In addition, small mammals may be consumed by animals higher in the food chain such as hawks and coyotes, which would add to the dispersal of americium from disposal areas. However, results of... [Pg.158]

Egregious examples also occurred of hazardous materials disposed of abroad with wanton disregard for safety, as, for example, when a landowner near the town of Koko in Nigeria was induced by a shipper from Italy to allow the stacking of barrels of highly toxic waste, some radioactive, on his property, in return for a small monthly rent [10]. [Pg.266]

By combining the findings of Cacchione, Drake and the results reported here, a coherent model can be proposed to explain the deposition inventory of the radionuclides. The down-canyon current transports large quantities of sediment toward the radioactive waste disposal site at 4000 m. Within the upper canyon, fine material is transported the furthest. Near the mouth of the canyon, sediment erosion of the walls occurs due to the down-canyon currents meeting a proposed opposing on-shore bottom current. The eroded material from the walls is transported and the finer material is deposited in eddies formed where the two currents meet. [Pg.355]

The discrepancy in numbers between natural and synthetic varieties is an expression of the usefulness of zeolitic materials in industry, a reflection of their unique physicochemical properties. The crystal chemistry of these aluminosilicates provides selective absorbtion and exchange of a remarkably wide range of molecules. Some zeolites have been called molecular sieves. This property is exploited in the purification and separation of various chemicals, such as in obtaining gasoline from crude petroleum, pollution control, or radioactive waste disposal (Mumpton, 1978). The synthesis of zeolites with a particular crystal structure, and thus specific absorbtion characteristics, has become very competitive (Fox, 1985). Small, often barely detectable, changes in composition and structure are now covered by patents. A brief review of the crystal chemistry of this mineral group illustrates their potential and introduces those that occur as fibers. [Pg.68]

Radioactive Waste Disposal. There are two principal types of radioactive materials produced in the operation of nuclear generating stations. Over 99% of the radioactivity produced is... [Pg.328]

The beneficial use of radiation is one of the best examples of how careful characterization of the hazard is essential for its safe use. A radioactive substance can be safely stored or transported if appropriately contained. Depending on the characteristics of the radioactive material, it can be safely handled by using appropriate shielding and safety precautions. Laboratory workers usually wear special badges that quantify radiation exposure to ensure that predetermined levels of exposure, which are considered safe, are not exceeded. Unfortunately, after more than 50 years, society has not yet been able to design and implement a safe way to dispose of radioactive waste. The hazardous properties of radiation are explored further in a subsequent chapter. [Pg.24]

Sediments in the Mississippi River were accidentally contaminated with a low-level radioactive waste material that leaked from a nuclear power plant on the river. Pore water concentrations of radioactive compounds were measured following the spill and found to be 10 g/m over a 2-mm depth. The water contamination was 30% radioactive cesium ( Cs), with a half-life of 30 years, and 70% radioactive cobalt ( °Co), with a half-life of 6 years. Objections by the local residents are preventing clean-up efforts because some professor at the local state university convinced them that dredging the sediments and placing them in a disposal facility downstream would expose the residents to still more radioactivity. The state has decided that the sediments should be capped with 10 cm of clay and needs a quick estimate of the diffusion of radioactive material through the clay cap (Figure E2.8.1). If the drinking water limit (10 g/m ) is reached at mid-depth in the cap, the state will increase its thickness. Will this occur ... [Pg.46]


See other pages where Waste disposal, radioactive materials is mentioned: [Pg.8]    [Pg.882]    [Pg.401]    [Pg.358]    [Pg.343]    [Pg.179]    [Pg.174]    [Pg.228]    [Pg.315]    [Pg.165]    [Pg.885]    [Pg.132]    [Pg.787]    [Pg.83]    [Pg.1646]    [Pg.1653]    [Pg.1735]    [Pg.825]    [Pg.120]    [Pg.273]    [Pg.193]    [Pg.175]    [Pg.88]    [Pg.107]    [Pg.70]    [Pg.1692]    [Pg.1699]    [Pg.1781]    [Pg.3]    [Pg.14]    [Pg.114]    [Pg.159]    [Pg.5]    [Pg.129]    [Pg.537]   
See also in sourсe #XX -- [ Pg.77 , Pg.78 , Pg.80 , Pg.211 , Pg.212 , Pg.215 , Pg.217 ]




SEARCH



Radioactive materials

Radioactive materials, disposal

Radioactive waste

Radioactive waste disposal

Radioactivity waste disposal

Waste disposal

Waste materials, disposal

© 2024 chempedia.info