Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphate vitamin

In an alkaline solution the greenish fluorescence of riboflavin in tissues is replaced by a bluish-white fluorescence characteristic of aneurin or thiamine. As a result of the application of this fact Sjdstrand was able, by his microspectrographic method, to localize vitamin Bi (aneurin or thiamine) in the myelin sheath of modulated nerves (see plate V, D). Smits and Florijn 27 found that in the red cells of chickens 70 % of the vitamin Bi pyrophosphate was concentrated in the nuclei. Since these nuclei occupied only 10 % by volume of the cell, there was thus a concentration of vitamin phosphate in the nuclei equal to twenty times that of the cytoplasm. The nuclei in this work were isolated by differential centrifugation. [Pg.29]

An example of a biologically important aide hyde is pyridoxal phosphate which is the active form of vitamin Bg and a coenzyme for many of the reac tions of a ammo acids In these reactions the ammo acid binds to the coenzyme by reacting with it to form an imine of the kind shown in the equation Re actions then take place at the ammo acid portion of the imine modifying the ammo acid In the last step enzyme catalyzed hydrolysis cleaves the imme to pyridoxal and the modified ammo acid... [Pg.728]

Valentinite, see Antimony(III) oxide Verdigris, see Copper acetate hydrate Vermillion, see Mercury(II) sulflde Villiaumite, see Sodium fluoride Vitamin B3, see Calcium (+)pantothenate Washing soda, see Sodium carbonate 10-water Whitlockite, see Calcium phosphate Willemite, see Zinc silicate(4—)... [Pg.275]

Description of Method. The water-soluble vitamins Bi (thiamine hydrochloride), B2 (riboflavin), B3 (niacinamide), and Be (pyridoxine hydrochloride) may be determined by CZE using a pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer or by MEKC using the same buffer with the addition of sodium dodecyl-sulfate. Detection Is by UV absorption at 200 nm. An Internal standard of o-ethoxybenzamide Is used to standardize the method. [Pg.607]

Procedure. A vitamin B complex tablet Is crushed and placed In a beaker with 20.00 mL of a 50% v/v methanol solution that Is 20 mM In sodium tetraborate and contains 100.0 ppm of o-ethoxybenzamIde. After mixing for 2 min to ensure that the B vitamins are dissolved, a 5.00-mL portion Is passed through a 0.45- xm filter to remove Insoluble binders. An approximately 4-nL sample Is loaded Into a 50- xm Internal diameter capillary column. For CZE the capillary column contains a 20 mM pH 9 sodium tetraborate/sodlum dIhydrogen phosphate buffer. For MEKC the buffer Is also 150 mM In sodium dodecylsulfate. A 40-kV/m electric field Is used to effect both the CZE and MEKC separations. [Pg.607]

The FCC is to food-additive chemicals what the USP—NF is to dmgs. In fact, many chemicals that are used in dmgs also are food additives (qv) and thus may have monographs in both the USP—NF and in the FCC. Examples of food-additive chemicals are ascorbic acid [50-81-7] (see Vitamins), butylated hydroxytoluene [128-37-0] (BHT) (see Antioxidants), calcium chloride [10043-52-4] (see Calcium compounds), ethyl vanillin [121-32-4] (see Vanillin), ferrous fumarate [7705-12-6] and ferrous sulfate [7720-78-7] (see Iron compounds), niacin [59-67-6] sodium chloride [7647-14-5] sodium hydroxide [1310-73-2] (see lkaliand cm ORiNE products), sodium phosphate dibasic [7558-79-4] (see Phosphoric acids and phosphates), spearmint oil [8008-79-5] (see Oils, essential), tartaric acid [133-37-9] (see Hydroxy dicarboxylic acids), tragacanth [9000-65-1] (see Gums), and vitamin A [11103-57-4]. [Pg.446]

Vitamin A (845 RE/L) and vitamin D (913 RE/L) may be added to fortify evaporated milk. Other possible ingredients are sodium citrate, disodium phosphate, and salts of carrageenan. Phosphate ions maintain an appropriate salt balance to prevent coagulation of the protein (casein) during sterilization. The amount of phosphate added depends on the amount of calcium and magnesium present. [Pg.365]

The amount of each element required in daily dietary intake varies with the individual bioavailabihty of the mineral nutrient. BioavailabiUty depends both on body need as deterrnined by absorption and excretion patterns of the element and by general solubiUty, and on the absence of substances that may cause formation of iasoluble products, eg, calcium phosphate, Ca2(P0 2- some cases, additional requirements exist either for transport of substances or for uptake or binding. For example, calcium-binding proteias are iavolved ia calcium transport an intrinsic factor is needed for vitamin cobalt,... [Pg.374]

Derivatives of ubiquiaones are antioxidants for foodstuffs and vitamins (qv) (217,218). Ubichromenol phosphates show antiinflammatory activity (219). Chroman o1 compounds inhibit oxidation of fats and can be used ia treatment of macrocytic anemias (220). Monosulfate salts of 2,3-dimethoxy-5-methyl-6-substitutedhydroquiaone have been reported to be inhibitors of Hpid oxidation ia rats (221). Polymers based on chloranilic and bromanilic acid have been prepared and contain oxygenated quiaones (63), which are derived from 1,2,3,4-benzenetetrol (222). [Pg.388]

Riboflavin-5 -Phosphate. Riboflavin-5 -phosphate [146-17-8] (vitamin B2 phosphate, flavin mononucleotide, FMN, cytoflav), C2yH22N402P,... [Pg.80]

In humans, thiamine is both actively and passively absorbed to a limited level in the intestines, is transported as the free vitamin, is then taken up in actively metabolizing tissues, and is converted to the phosphate esters via ubiquitous thiamine kinases. During thiamine deficiency all tissues stores are readily mobilhed. Because depletion of thiamine levels in erythrocytes parallels that of other tissues, erythrocyte thiamine levels ate used to quantitate severity of the deficiency. As deficiency progresses, thiamine becomes indetectable in the urine, the primary excretory route for this vitamin and its metaboHtes. Six major metaboHtes, of more than 20 total, have been characterized from human urine, including thiamine fragments (7,8), and the corresponding carboxyHc acids (1,37,38). [Pg.88]

In the human market, oral and parenteral dosage forms are prepared from the crystal. However, because of the extremely high potency, more dilute (0.1—10%) forms are avabable. These include dilutions with mannitol, triturations on dicalcium phosphate or resins, and spray-dried forms. Prices for these forms are driven by that of the crystal, which in early 1996 was ca 9.50/gram (95). Prices for the vitamin have risen during the first half of the 1990s. However, Htde growth in price beyond inflation is anticipated. [Pg.122]

Hydroxy vitamin D pools ia the blood and is transported on DBF to the kidney, where further hydroxylation takes place at C-1 or C-24 ia response to calcium levels. l-Hydroxylation occurs primarily ia the kidney mitochondria and is cataly2ed by a mixed-function monooxygenase with a specific cytochrome P-450 (52,179,180). 1 a- and 24-Hydroxylation of 25-hydroxycholecalciferol has also been shown to take place ia the placenta of pregnant mammals and ia bone cells, as well as ia the epidermis. Low phosphate levels also stimulate 1,25-dihydtoxycholecalciferol production, which ia turn stimulates intestinal calcium as well as phosphoms absorption. It also mobilizes these minerals from bone and decreases their kidney excretion. Together with PTH, calcitriol also stimulates renal reabsorption of the calcium and phosphoms by the proximal tubules (51,141,181—183). [Pg.136]

Further side-chain oxidation of vitamin metabohtes may be necessary for phosphate transport (188,189). 24,25-Dihydtoxycholecalcifetol is... [Pg.136]

Although it is being found that vitamin D metaboUtes play a role ia many different biological functions, metaboHsm primarily occurs to maintain the calcium homeostasis of the body. When calcium semm levels fall below the normal range, 1 a,25-dihydroxy-vitainin is made when calcium levels are at or above this level, 24,25-dihydroxycholecalciferol is made, and 1 a-hydroxylase activity is discontiaued. The calcium homeostasis mechanism iavolves a hypocalcemic stimulus, which iaduces the secretion of parathyroid hormone. This causes phosphate diuresis ia the kidney, which stimulates the 1 a-hydroxylase activity and causes the hydroxylation of 25-hydroxy-vitamin D to 1 a,25-dihydroxycholecalciferol. Parathyroid hormone and 1,25-dihydroxycholecalciferol act at the bone site cooperatively to stimulate calcium mobilization from the bone (see Hormones). Calcium blood levels are also iafluenced by the effects of the metaboUte on intestinal absorption and renal resorption. [Pg.137]

Three hormones regulate turnover of calcium in the body (22). 1,25-Dihydroxycholecalciferol is a steroid derivative made by the combined action of the skin, Hver, and kidneys, or furnished by dietary factors with vitamin D activity. The apparent action of this compound is to promote the transcription of genes for proteins that faciUtate transport of calcium and phosphate ions through the plasma membrane. Parathormone (PTH) is a polypeptide hormone secreted by the parathyroid gland, in response to a fall in extracellular Ca(Il). It acts on bones and kidneys in concert with 1,25-dihydroxycholecalciferol to stimulate resorption of bone and reabsorption of calcium from the glomerular filtrate. Calcitonin, the third hormone, is a polypeptide secreted by the thyroid gland in response to a rise in blood Ca(Il) concentration. Its production leads to an increase in bone deposition, increased loss of calcium and phosphate in the urine, and inhibition of the synthesis of 1,25-dihydroxycholecalciferol. [Pg.409]

FIGURE 7.17 Separation of a complex mixture on Fractogel EMD BioSEC (S) with a column dimension of 1000 X 50 mm (Superformance glass column). The sample contained ferritin (I), immunoglobulin G (2), transferrin (3), ovalbumin (4), myoglobin (5), aprotinin (6), and vitamin B, (7). Five milliliters of the mixture was injected onto the column at a flow rate of 3 ml/min (eluent 20 mAI sodium phosphate buffer, 0.1 M NaCI, pH 7.2). [Pg.241]

FIGURE 8.18 Dolichol phosphate is an initiation point for the synthesis of carbohydrate polymers in animals. The analogous alcohol in bacterial systems, undecaprenol, also known as bactoprenol, consists of 11 isoprene units. Undecaprenyl phosphate delivers sugars from the cytoplasm for the synthesis of cell wall components such as peptidoglycans, lipopolysaccharides, and glycoproteins. Polyprenyl compounds also serve as the side chains of vitamin K, the ubiquinones, plastoquinones, and tocopherols (such as vitamin E). [Pg.253]

Riboflavin (vitamin Bg) Nicotinamide adenine dinncleotide phosphate (NADP+) Flavin adenine dinncleotide (FAD)... [Pg.587]

Riboflavin, or vitamin B2, is a constituent and precursor of both riboflavin 5 -phosphate, also known as flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). The name riboflavin is a synthesis of the names for the molecule s component parts, ribitol and flavin. The structures of riboflavin. [Pg.590]

Riboflavin was first isolated from whey in 1879 by Blyth, and the structure was determined by Kuhn and coworkers in 1933. For the structure determination, this group isolated 30 mg of pure riboflavin from the whites of about 10,000 eggs. The discovery of the actions of riboflavin in biological systems arose from the work of Otto Warburg in Germany and Hugo Theorell in Sweden, both of whom identified yellow substances bound to a yeast enzyme involved in the oxidation of pyridine nucleotides. Theorell showed that riboflavin 5 -phosphate was the source of the yellow color in this old yellow enzyme. By 1938, Warburg had identified FAD, the second common form of riboflavin, as the coenzyme in D-amino acid oxidase, another yellow protein. Riboflavin deficiencies are not at all common. Humans require only about 2 mg per day, and the vitamin is prevalent in many foods. This vitamin... [Pg.592]


See other pages where Phosphate vitamin is mentioned: [Pg.1126]    [Pg.1126]    [Pg.180]    [Pg.150]    [Pg.252]    [Pg.285]    [Pg.415]    [Pg.408]    [Pg.5]    [Pg.66]    [Pg.66]    [Pg.68]    [Pg.68]    [Pg.68]    [Pg.71]    [Pg.71]    [Pg.84]    [Pg.111]    [Pg.114]    [Pg.389]    [Pg.495]    [Pg.290]    [Pg.801]    [Pg.575]    [Pg.575]    [Pg.184]    [Pg.395]    [Pg.396]    [Pg.453]   
See also in sourсe #XX -- [ Pg.359 ]

See also in sourсe #XX -- [ Pg.359 ]

See also in sourсe #XX -- [ Pg.359 ]




SEARCH



Niacin (Vitamin B3) and Nicotinamide Adenine Dinucleotide Phosphate (NADP

Phosphate effects vitamin

Phosphate, absorption vitamin D metabolism

Pyridoxal Phosphate (Vitamin B6) as Coenzyme for Transamination

Pyridoxine (vitamin pyridoxal phosphate

Pyridoxine (vitamin pyridoxamine phosphate

Vitamin D (cont phosphate absorption

Vitamin Phosphate Esters

Vitamin phosphate increased

Vitamin pyridoxal phosphate

Vitamin pyridoxine phosphate oxidase

© 2024 chempedia.info