Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vitamin megaloblastic anemias

Fohc acid is a precursor of several important enzyme cofactors required for the synthesis of nucleic acids (qv) and the metaboHsm of certain amino acids. Fohc acid deficiency results in an inabiUty to produce deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and certain proteins (qv). Megaloblastic anemia is a common symptom of folate deficiency owing to rapid red blood cell turnover and the high metaboHc requirement of hematopoietic tissue. One of the clinical signs of acute folate deficiency includes a red and painhil tongue. Vitamin B 2 folate share a common metaboHc pathway, the methionine synthase reaction. Therefore a differential diagnosis is required to measure foHc acid deficiency because both foHc acid and vitamin B 2 deficiency cause... [Pg.41]

Deficiency. Macrocytic anemia, megaloblastic anemia, and neurological symptoms characterize vitamin B 2 deficiency. Alterations in hematopoiesis occur because of the high requirement for vitamin B 2 for normal DNA repHcation necessary to sustain the rapid turnover of the erythrocytes. Abnormal DNA repHcation secondary to vitamin B 2 deficiency produces a defect in the nuclear maturational process of committed hematopoietic stem cells. As a result, the erythrocytes are either morphologically abnormal or die during development. [Pg.112]

Vitamin B12 is essential to growth, cell reproduction, the manufacture of myelin (which surrounds some nerve fibers), and blood cell manufacture. The intrinsic factor, which is produced by cells in the stomach, is necessary for the absorption of vitamin B12 in the intestine A deficiency of the intrinsic factor results in abnormal formation of erythrocytes because of the body s failure to absorb vitamin B12, a necessary component for blood cell formation. The resulting anemia is a type of megaloblastic anemia called pernicious anemia. [Pg.437]

The water-soluble vitamins comprise the B complex and vitamin C and function as enzyme cofactors. Fofic acid acts as a carrier of one-carbon units. Deficiency of a single vitamin of the B complex is rare, since poor diets are most often associated with multiple deficiency states. Nevertheless, specific syndromes are characteristic of deficiencies of individual vitamins, eg, beriberi (thiamin) cheilosis, glossitis, seborrhea (riboflavin) pellagra (niacin) peripheral neuritis (pyridoxine) megaloblastic anemia, methyhnalonic aciduria, and pernicious anemia (vitamin Bjj) and megaloblastic anemia (folic acid). Vitamin C deficiency leads to scurvy. [Pg.481]

Pernicious anemia arises when vitamin B,2 deficiency blocks the metabohsm of folic acid, leading to functional folate deficiency. This impairs erythropoiesis, causing immature precursors of erythrocytes to be released into the circulation (megaloblastic anemia). The commonest cause of pernicious anemia is failure of the absorption of vitamin B,2 rather than dietary deficiency. This can be due to failure of intrinsic factor secretion caused by autoimmune disease of parietal cells or to generation of anti-intrinsic factor antibodies. [Pg.492]

Deficiency of fohc acid itself—or deficiency of vitamin Bi2, which leads to functional fohc acid deficiency—affects cells that are dividing rapidly because they have a large requirement for thymidine for DNA synthesis. ChnicaUy, this affects the bone marrow, leading to megaloblastic anemia. [Pg.494]

Folate supplements will rectify the megaloblastic anemia of vitamin Bj2 deficiency but may hasten the development of the (irreversible) nerve damage found in B,2 deficiency. There is also antagonism between fohc acid and the anticonvulsants used in the treatment of epilepsy. [Pg.494]

Besides other functions, vitamin Bj2 and fohc acid take part in providing one-carbon residues for DNA synthesis, deficiency resulting in megaloblastic anemia. Vitamin C is a water-soluble antioxidant that maintains vitamin E and many metal cofactors in the reduced state. [Pg.497]

Megaloblastic anemias Deficiency of vitamin 6,2 Decreased absorption of 6,2, often due to a deficiency of intrinsic factor, normally secreted by gastric parietal cells... [Pg.610]

Vitamin B12 (cyanocobalmin) administered both orally and parenterally is equally effective in treating anemia from vitamin B12 deficiency. However, use of parenteral cyanacobalamin is the most common method of vitamin B12 replacement because it may be more reliable and practical. Subcutaneous or intramuscular administration is appropriate. Vitamin B12 is absorbed completely following parenteral administration, whereas oral vitamin B12 is absorbed poorly via the GI tract. Furthermore, use of parenteral vitamin B12 to treat megaloblastic anemia may circumvent the need to perform a Schilling test to diagnose lack of intrinsic factor. [Pg.982]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria 677 Cobalamin-c disease remethylation of homocysteine to methionine also requires an activated form of vitamin B12 677 Hereditary folate malabsorption presents with megaloblastic anemia, seizures and neurological deterioration 678... [Pg.667]

The fibroblasts do not convert cyanocobalamin or hydroxocobalamin to methylcobalamin or adenosyl-cobalamin, resulting in diminished activity of both N5-methyltetrahydrofolate homocysteine methyltransferase and methylmalonyl-CoA mutase. Supplementation with hydroxocobalamin rectifies the aberrant biochemistry. The precise nature of the underlying defect remains obscure. Diagnosis should be suspected in a child with homocystinuria, methylmalonic aciduria, megaloblastic anemia, hypomethioninemia and normal blood levels of folate and vitamin B12. A definitive diagnosis requires demonstration of these abnormalities in fibroblasts. Prenatal diagnosis is possible. [Pg.678]

Macrocytic anemias Megaloblastic anemias Vitamin B12 deficiency Folic acid deficiency anemia Microcytic hypochromic anemias Iron-deficiency anemia Genetic anomaly Sickle cell anemia Thalassemia... [Pg.377]

Table 11 gives results with the above procedure. The vitamin B12 values are included to differentiate in megaloblastic anemias those due to... [Pg.221]

A modification of the above serum folic assay method was recently described (W4). The investigators confirmed the validity of this technique as a practical means of differentiating patients with folic acid from vitamin B12 megaloblastic anemias. Another modification of this method was also described (C4). These investigators reduced the over-all sensitivity by high serum dilutions and thus made the assay, as they used it, valueless as a diagnostic tool. [Pg.222]

In view of the reported growing importance ascribed to folic acid deficiency in the prevention of various disease conditions, such as neural tube defects, megaloblastic anemia, colon cancer, and colorectal cancer, a dissolution requirement is specified for folic acid when it is present in multivitamin-mineral combination products. Currently, the dissolution standard required in the official articles of dietary supplements (including vitamin-mineral combination products) places folic acid outside the index vitamin hierarchy. Therefore, a mandatory dissolution test for folic acid is required that is independent of and in addition to the mandatory index vitamin test for multivitamin preparations containing folic acid. [Pg.413]

Vitamin deficiency can cause a megaloblastic anemia of the same type seen in folate deficiency (discussed in Chapter 17). In a patient with megaloblastic anemia, it is important to determine the underlying cause because Bjj defidency, if not corrected, produces a peripheral neuropathy owing to aberrant fatty acid incorporation into the myelin sheets associated with inadequate methylmalonyl CoA mutase activity. Excretion of methylmalonic acid indicates a vitamin Bjj deficiency rather than folate. [Pg.229]

A frequent cause of vitamin B12 deficiency is atrophic gastritis leading to a lack of intrinsic factor. Besides megaloblastic anemia, damage to mucosal linings and degeneration of myelin sheaths with neurological sequelae will occur (pernicious anemia). [Pg.138]

Treatment of pernicious anemia and other megaloblastic anemias where vitamin B-12 is deficient (not effective). [Pg.63]

Pernicious anemia and other megaloblastic anemias secondary to lack of vitamin Bi2. [Pg.67]

Anemias Leucovorin is improper therapy for pernicious anemia and other megaloblastic anemias secondary to the lack of vitamin B- 2-... [Pg.68]

Anemia Administration has been associated in a few cases with vitamin B-12 or folic acid deficiency, megaloblastic anemia, and sideroblastic anemia. If evidence of anemia develops, institute appropriate studies and therapy. [Pg.1726]

The answer is D. Several vitamin deficiencies can cause anemia due to reduced DNA synthesis in the erythropoietic cells of the bone marrow, especially folic acid and vitamin Bj2 (cobalamin), which are particularly prevalent among elderly patients due to poor diet and reduced absorption. In addition, deficiencies of either folic acid or vitamin Bj2 could produce the megaloblastic anemia seen in this patient. However, the absence of neurologic symptoms, a hallmark of vitamin Bj2 deficiency, makes that diagnosis less likely than folic acid deficiency. [Pg.149]

Without a firm diagnosis folic acid should not be given to all patients with megaloblastic anemia as irreversible neurological damage from vitamin B12... [Pg.369]

Vitamin E may be indicated in some rare forms of anemia such as macrocytic, megaloblastic anemia observed in children with severe malnutrition and the hemolytic anemia seen in premature infants on a diet rich in polyunsaturated fatty acids. Also anemia s in malabsorption syndromes have shown to be responsive to vitamin E treatment. Finally, hemolysis in patients with the acanthocytosis syndrome, a rare genetic disorder where there is a lack of plasma jS-lipoprotein and consequently no circulating alpha tocopherol, responds to vitamin E treatment. In neonates requiring oxygen therapy vitamin E has been used for its antioxidant properties to prevent the development retrolental fibroplasia. It should be noted that high dose vitamin E supplements are associated with an increased risk in allcause mortality. [Pg.476]

Severe cyanocobalamin (vitamin B12) deficiency results in pernicious anemia that is characterized by megaloblastic anemia and neuropathies. The symptoms of this deficiency can be masked by high intake of folate. Vitamin B12 is recycled by an effective enterohep-atic circulation and thus has a very long half-hfe. Absorption of vitamin B12 from the gastrointestinal tract requires the presence of gastric intrinsic factor. This factor binds to the vitamin, forming a complex that... [Pg.780]

Folic acid deficiency symptoms include megaloblastic anemia, glossitis, diarrhea, and weight loss. The requirement for this vitamin increases during pregnancy and lactation. [Pg.780]

Megaloblastic anemia is characterized by the appearance of large cells in the bone marrow and blood due to defective maturation of hematopoietic cells. Folic acid or vitamin B12 deficiency will result in this type of anemia. Malabsorption, impaired use, chronic infections, and drugs can lead to folic acid or vitamin B12 deficiency. [Pg.783]

C. The only effective treatment of pernicious anemia is supplementation of vitamin B12.It is important to determine whether megaloblastic anemia is from a deficiency of folic acid or vitamin B12. Treatment of vitamin Bi2-deficient anemia with folic acid may result in neurological damage if vitamin Bi2 is not adequately supplemented. [Pg.784]

Contraindications Pernicious anemia, other megaloblastic anemias secondary to vitamin Bi2 deficiency... [Pg.681]

Vitamin B12 (cobalamin) serves as a cofactor for several essential biochemical reactions in humans. Deficiency of vitamin B12 leads to megaloblastic anemia (Table 33-2), gastrointestinal symptoms, and neurologic abnormalities. Although... [Pg.734]

Bi2 are only about 2 meg, it would take about 5 years for all of the stored vitamin B12 to be exhausted and for megaloblastic anemia to develop if Bi2 absorption were stopped. Vitamin B12 in physiologic amounts is absorbed only after it complexes with intrinsic factor, a glycoprotein secreted by the parietal cells of the gastric mucosa. Intrinsic factor combines with the vitamin Bi2 that is liberated from dietary sources in the stomach and duodenum, and the intrinsic factor-vitamin Bi2 complex is subsequently absorbed in the distal ileum by a highly selective receptor-mediated transport system. Vitamin Bi2 deficiency in humans most often results from malabsorption of vitamin B12 due either to lack of intrinsic factor or to loss or malfunction of the specific absorptive mechanism in the distal ileum. Nutritional deficiency is rare but may be seen in strict vegetarians after many years without meat, eggs, or dairy products. [Pg.735]

Once a diagnosis of megaloblastic anemia is made, it must be determined whether vitamin B12 or folic acid deficiency is the cause. (Other causes of megaloblastic anemia are very rare.) This can usually be accomplished by measuring serum levels of the vitamins. The Schilling test, which measures absorption and urinary excretion of radioactively labeled vitamin B12, can be used to further define the mechanism of vitamin Bi2 malabsorption when this is found to be the cause of the megaloblastic anemia. [Pg.738]

Folate deficiency results in a megaloblastic anemia that is microscopically indistinguishable from the anemia caused by vitamin B12 deficiency (see above). However, folate deficiency does not cause the characteristic neurologic syndrome seen in vitamin B12 deficiency. In patients with megaloblastic anemia, folate status is assessed with assays for serum... [Pg.741]

Cyanocobalamin A cofactor required for essential enzymatic reactions that form tetrahydrofolate, convert homocysteine to methionine, and metabolize l-methylmalonyl-CoA Adequate supplies are required for amino acid and fatty acid metabolism, and DNA synthesis Treatment of vitamin B12 deficiency, which manifests as megaloblastic anemia and is the basis of pernicious anemia Parenteral vitamin B12 is required for pernicious anemia and other malabsorption syndromes Toxicity No toxicity associated with excess vitamin B12... [Pg.749]


See other pages where Vitamin megaloblastic anemias is mentioned: [Pg.36]    [Pg.42]    [Pg.382]    [Pg.29]    [Pg.31]    [Pg.273]    [Pg.192]    [Pg.172]    [Pg.628]    [Pg.783]    [Pg.515]    [Pg.729]    [Pg.735]    [Pg.738]   
See also in sourсe #XX -- [ Pg.346 ]




SEARCH



Anemias megaloblastic

Vitamin Megaloblast

Vitamins anemia

© 2024 chempedia.info