Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelasticity determinism

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

Viscoelastic parameters Ki, K2 and q of the model are determined by fitting the experimental curve V(t) to the sum of cosines with constant coefficients ... [Pg.243]

Direct determination of relaxation time through viscoelastic studies (all mechanical properties involve this important parameter). [Pg.124]

In principle, the relaxation spectrum H(r) describes the distribution of relaxation times which characterizes a sample. If such a distribution function can be determined from one type of deformation experiment, it can be used to evaluate the modulus or compliance in experiments involving other modes of deformation. In this sense it embodies the key features of the viscoelastic response of a spectrum. Methods for finding a function H(r) which is compatible with experimental results are discussed in Ferry s Viscoelastic Properties of Polymers. In Sec. 3.12 we shall see how a molecular model for viscoelasticity can be used as a source of information concerning the relaxation spectrum. [Pg.167]

A variety of commercial instruments are available for the determination of the viscoelastic behavior of samples. Figure 3.15 shows one such apparatus, the Rheovibron Viscoelastometer. This instrument also takes advantage of the complementarity that exists between time and temperature It operates at four frequencies over a 175°C temperature range. With accessories, both the frequency range and the temperature range can be broadened still further. [Pg.179]

The significance of G G tan 5, Tj, and Tj is that they can be determined experimentally and used to characterize real materials. These parameters depend on frequency and temperature, and this dependence can be used to define behavior. For example, viscoelastic fluids are often characterized by log—log plots of one or more of these quantities vs the angular frequency CO, as shown in Figure 21, which illustrates the behavior of a polymer melt (149). [Pg.178]

Piston Cylinder (Extrusion). Pressure-driven piston cylinder capillary viscometers, ie, extmsion rheometers (Fig. 25), are used primarily to measure the melt viscosity of polymers and other viscous materials (21,47,49,50). A reservoir is connected to a capillary tube, and molten polymer or another material is extmded through the capillary by means of a piston to which a constant force is appHed. Viscosity can be determined from the volumetric flow rate and the pressure drop along the capillary. The basic method and test conditions for a number of thermoplastics are described in ASTM D1238. Melt viscoelasticity can influence the results (160). [Pg.182]

Dyna.mic Viscometer. A dynamic viscometer is a special type of rotational viscometer used for characterising viscoelastic fluids. It measures elastic as weU as viscous behavior by determining the response to both steady-state and oscillatory shear. The geometry may be cone—plate, parallel plates, or concentric cylinders parallel plates have several advantages, as noted above. [Pg.187]

Acoustic Measurements. Measurement of the propagation of ultrasonic acoustic waves has been found useful for determining the viscoelastic properties of thin films of adhesives. In this method, the specimen is clamped between transmitting and receiving transducers. The change in pulse shape between successive reverberation of the pulse is dependent on the viscoelastic properties of the transmitting material. Modulus values can be calculated (267,268). [Pg.196]

Fluids. The previous methods were designed for soHd specimens, although some can be used for fluids if a soHd support or carrier is used. The fluid must be highly viscoelastic for data to register, and absolute modulus values are difficult to determine because of the presence of the support. [Pg.201]

Viscoelasticity can also be determined by a controlled stress rheometer. The shape of a creep curve can show that a fluid is viscoelastic, and the amount of recovery after the stress is removed gives a measure of elasticity. [Pg.201]

Rheometric Scientific markets several devices designed for characterizing viscoelastic fluids. These instmments measure the response of a Hquid to sinusoidal oscillatory motion to determine dynamic viscosity as well as storage and loss moduH. The Rheometric Scientific line includes a fluids spectrometer (RFS-II), a dynamic spectrometer (RDS-7700 series II), and a mechanical spectrometer (RMS-800). The fluids spectrometer is designed for fairly low viscosity materials. The dynamic spectrometer can be used to test soHds, melts, and Hquids at frequencies from 10 to 500 rad/s and as a function of strain ampHtude and temperature. It is a stripped down version of the extremely versatile mechanical spectrometer, which is both a dynamic viscometer and a dynamic mechanical testing device. The RMS-800 can carry out measurements under rotational shear, oscillatory shear, torsional motion, and tension compression, as well as normal stress measurements. Step strain, creep, and creep recovery modes are also available. It is used on a wide range of materials, including adhesives, pastes, mbber, and plastics. [Pg.202]

The transition to turbulent flow begins at Re R in the range of 2,000 to 2,500 (Metzuer and Reed, AIChE J., 1, 434 [1955]). For Bingham plastic materials, K and n must be evaluated for the condition in question in order to determine Re R and establish whether the flow is laminar. An alternative method for Bingham plastics is by Hanks (Hanks, AIChE J., 9, 306 [1963] 14, 691 [1968] Hanks and Pratt, Soc. Petrol. Engrs. J., 7, 342 [1967] and Govier and Aziz, pp. 213-215). The transition from laminar to turbulent flow is influenced by viscoelastic properties (Metzuer and Park, J. Fluid Mech., 20, 291 [1964]) with the critical value of Re R increased to beyond 10,000 for some materials. [Pg.640]

The grade of polypropylene whose creep curves are given in Fig. 2.5 is to have its viscoelastic behaviour fltted to a Maxwell model for stresses up to 6 MN/m and times up to ICKX) seconds. Determine the two constants for the model and use these to determine the stress in the material after 900 seconds if the material is subjected to a constant strain of 0.4% throughout the 900 seconds. [Pg.162]

The viscoelastic nature of the material requires not merely the use of data sheet information for calculation purposes, but also the actual long-term performance experience gained that can be used as a guide. The allowable working stress is important for determining dimensions of the stressed area and... [Pg.39]

From such curves, however, it would not be possible to determine whether the viscoelasticity is in fact linear. An experiment is needed where the time effect can be isolated. Typical of such experiments is stress relaxation. In this test, the specimen is strained to a specified magnitude at the beginning of the test and held unchanged throughout the experiment, while the monotonically decay-... [Pg.42]

As reviewed thermoplastics (TPs) being viscoelastic materials respond to induced stress by two mechanisms viscous flow and elastic deformation. Viscous flow ultimately dissipates the applied mechanical energy as frictional heat and results in permanent material deformation. Elastic deformation stores the applied mechanical energy as completely recoverable material deformation. The extent to which one or the other of these mechanisms dominates the overall response of the material is determined by the temperature and by the duration and magnitude of the stress or strain. The higher the temperature, the most freedom of movement of the individual plastic molecules that comprise the... [Pg.45]

The viscoelastic creep modulus may be determined at a given temperature by dividing the constant applied stress by the total strain prevailing at a particular time. Since the creep strain increases with time, the viscoelastic creep modulus must decrease with time (Fig. 2-23). Below its critical stress for linear viscoelasticity, the viscoelastic creep modulus versus time curve for a material is independent of the applied stress. In other words, the family of strain versus time curves for a material at a given temperature and several levels of applied stress may be collapsed to a single viscoelastic creep-modulus-time-curve if the highest applied stress is less than the critical value. [Pg.64]


See other pages where Viscoelasticity determinism is mentioned: [Pg.467]    [Pg.170]    [Pg.467]    [Pg.170]    [Pg.120]    [Pg.90]    [Pg.114]    [Pg.136]    [Pg.157]    [Pg.151]    [Pg.152]    [Pg.153]    [Pg.153]    [Pg.166]    [Pg.177]    [Pg.177]    [Pg.178]    [Pg.202]    [Pg.252]    [Pg.329]    [Pg.3]    [Pg.16]    [Pg.112]    [Pg.199]    [Pg.208]    [Pg.218]    [Pg.371]    [Pg.374]    [Pg.587]    [Pg.612]    [Pg.230]    [Pg.93]    [Pg.107]    [Pg.115]    [Pg.115]   
See also in sourсe #XX -- [ Pg.239 ]




SEARCH



© 2024 chempedia.info