Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Creep strain

Rheometric Scientific markets several devices designed for characterizing viscoelastic fluids. These instmments measure the response of a Hquid to sinusoidal oscillatory motion to determine dynamic viscosity as well as storage and loss moduH. The Rheometric Scientific line includes a fluids spectrometer (RFS-II), a dynamic spectrometer (RDS-7700 series II), and a mechanical spectrometer (RMS-800). The fluids spectrometer is designed for fairly low viscosity materials. The dynamic spectrometer can be used to test soHds, melts, and Hquids at frequencies from 10 to 500 rad/s and as a function of strain ampHtude and temperature. It is a stripped down version of the extremely versatile mechanical spectrometer, which is both a dynamic viscometer and a dynamic mechanical testing device. The RMS-800 can carry out measurements under rotational shear, oscillatory shear, torsional motion, and tension compression, as well as normal stress measurements. Step strain, creep, and creep recovery modes are also available. It is used on a wide range of materials, including adhesives, pastes, mbber, and plastics. [Pg.202]

When a load is initially applied to a specimen, there is an instantaneous strain or elongation. Subsequent to this, there is the time-dependent part of the strain (creep), which results from the continuation of the constant stress at a constant temperature. In terms of design, creep means changing dimensions and deterioration of product strength when the product is subjected to a steady load over a prolonged period of time. [Pg.317]

Plastics, both thermoplastic and thermosetting, will deform under static load. This is known as creep. For this reason those materials whose prime function is mechanical are generally reinforced with mineral filler or short fibres, or else oriented by drawing. Many components have a limit on acceptable deformation, and the predicted creep strain at the end of life will be fed back to define either a maximum load, or mechanical dimensions large enough for the component to remain within the limitations on strain. Creep becomes more pronounced at higher temperatures. [Pg.32]

Service temperatures are lower under loading because of modulus decay, strain, creep, relaxation. .. They can be of the order of ... [Pg.222]


See other pages where Creep strain is mentioned: [Pg.177]    [Pg.28]    [Pg.71]    [Pg.413]    [Pg.157]   
See also in sourсe #XX -- [ Pg.432 ]

See also in sourсe #XX -- [ Pg.155 ]




SEARCH



© 2024 chempedia.info