Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl acetate initiation systems

Shaver and coworkers [319] investigated the mechanism of bis(imino)pyridine ligand framework for transition metal systems-mediated polymerization of vinyl acetate. Initiation using azobisisobu-tyronitrile at 120°C results in excellent control over poly(vinyl acetate) molecular weights and polymer dispersities. The reaction yields vanadium-terminated polymer chains which can be readily converted to both proton-terminated poly(vinyl acetate) or poly(vinyl alcohol). Irreversible halogen transfer from the parent complex to a radical derived from azobisisobutyronitrile generates the active species. [Pg.391]

The principal use of the peroxodisulfate salts is as initiators (qv) for olefin polymerisation in aqueous systems, particularly for the manufacture of polyacrylonitrile and its copolymers (see Acrylonitrile polymers). These salts are used in the emulsion polymerisation of vinyl chloride, styrene—butadiene, vinyl acetate, neoprene, and acryhc esters (see Acrylic ester polymers Styrene Vinyl polymers). [Pg.96]

T[[dotb]he nature of the initial attack by the water (eq. 10) is a matter of some controversy (205,206). Stereochemical and kinetic studies of model systems have been reported that support trans addition of external water (207,208) or internal addition of cis-coordinated water (209), depending on the particular model system under study. Other paHadium-cataly2ed oxidations of olefins ia various oxygen donor solvents produce a variety of products including aldehydes (qv), ketones (qv), vinyl acetate, acetals, and vinyl ethers (204). However the product mixtures are complex and very sensitive to conditions. [Pg.183]

Emulsion Polymerization. Poly(vinyl acetate)-based emulsion polymers are produced by the polymerization of an emulsified monomer through free-radicals generated by an initiator system. Descriptions of the technology may be found in several references (35—39). [Pg.463]

Buffers are frequently added to emulsion recipes and serve two main purposes. The rate of hydrolysis of vinyl acetate and some comonomers is pH-sensitive. Hydrolysis of monomer produces acetic acid, which can affect the initiator, and acetaldehyde which as a chain-transfer agent may lower the molecular weight of the polymer undesirably. The rates of decomposition of some initiators are affected by pH and the buffer is added to stabilize those rates, since decomposition of the initiator frequently changes the pH in an unbuffered system. Vinyl acetate emulsion polymerization recipes are usually buffered to pH 4—5, eg, with phosphate or acetate, but buffering at neutral pH with bicarbonate also gives excellent results. The pH of most commercially available emulsions is 4—6. [Pg.464]

Continuous polymerization systems offer the possibiUty of several advantages including better heat transfer and cooling capacity, reduction in downtime, more uniform products, and less raw material handling (59,60). In some continuous emulsion homopolymerization processes, materials are added continuously to a first ketde and partially polymerized, then passed into a second reactor where, with additional initiator, the reaction is concluded. Continuous emulsion copolymerizations of vinyl acetate with ethylene have been described (61—64). Recirculating loop reactors which have high heat-transfer rates have found use for the manufacture of latexes for paint appHcations (59). [Pg.464]

Propagation. The rate of emulsion polymerization has been found to depend on initiator, monomer, and emulsifier concentrations. In a system of vinyl acetate, sodium lauryl sulfate, and potassium persulfate, the following relationship for the rate of polymerization has been suggested (85) ... [Pg.465]

Since poly(vinyl acetate) is usually used in an emulsion form, the emulsion polymerisation process is commonly used. In a typical system, approximately equal quantities of vinyl acetate and water are stirred together in the presence of a suitable colloid-emulsifier system, such as poly(vinyl alcohol) and sodium lauryl sulphate, and a water-soluble initiator such as potassium persulphate. [Pg.388]

For the remaining three systems, styrene-vinyl acetate, vinyl acetate-vinyl chloride, and methyl acrylate-vinyl chloride, one reactivity ratio is greater than unity and the other is less than unity. They are therefore nonazeotropic. Furthermore, since both ri and 1/7 2 are either greater than or less than unity, both radicals prefer the same monomer. In other words, the same monomer—styrene, vinyl chloride, and methyl acrylate in the three systems, respectively—is more reactive than the other with respect to either radical. This preference is extreme in the styrene-vinyl acetate system where styrene is about fifty times as reactive as vinyl acetate toward the styrene radical the vinyl acetate radical prefers to add the styrene monomer by a factor of about one hundred as compared with addition of vinyl acetate. Hence polymerization of a mixture of similar amounts of styrene and vinyl acetate yields an initial product which is almost pure polystyrene. Only after most of the styrene has polymerized is a copolymer formed... [Pg.187]

The work function of the rubbing surfaces and the electron affinity of additives are interconnected on the molecular level. This mechanism has been discussed in terms of tribopolymerization models as a general approach to boundary lubrication (Kajdas 1994, 2001). To evaluate the validity of the anion-radical mechanism, two metal systems were investigated, a hard steel ball on a softer steel plate and a hard ball on an aluminum plate. Both metal plates emit electrons under friction, but aluminum produced more exoelectrons than steel. With aluminum, the addition of 1% styrene to the hexadecane lubricating fluid reduced the wear volume of the plate by over 65%. This effect considerably predominates that of steel on steel. Friction initiates polymerization of styrene, and this polymer formation was proven. It was also found that lauryl methacrylate, diallyl phthalate, and vinyl acetate reduced wear in an aluminum pin-on-disc test by 60-80% (Kajdas 1994). [Pg.426]

Emulsion Polymerizations, eg. vinyl acetate [VAc]/ABDA, VAc/ethylene [VAE]/ABDA, butyl acrylate [BA]/ABDA, were done under nitrogen using mixed anionic/nonlonic or nonionic surfactant systems with a redox Initiator, eg. t-butyl hydroperoxide plus sodium formaldehyde sulfoxylate. Base monomer addition was batch or batch plus delay comonomer additions were delay. [Pg.470]

Depending on the monomer, one needs to adjust the components of the system as well as reaction conditions so that radical concentrations are sufficiently low to effectively suppress normal termination. The less reactive monomers, such as ethylene, vinyl chloride, and vinyl acetate, have not been polymerized by ATRP. Acidic monomers such as acrylic acid are not polymerized because they interfere with the initiator by protonation of the ligands. The car-boxylate salts of acidic monomers are polymerized without difficulty. New ATRP initiators and catalysts together with modification of reaction conditions may broaden the range of polymerizable monomers in the future. [Pg.320]

With emulsion polymerization it is possible to prepare very high-molecular-weight polymers at high rates of polymerization. The required reaction temperatures are low and can even be below 20 °C when redox systems are used for initiation (see Examples 3-11). Polymer emulsions with solid contents of 50% and higher can be very stable. In many cases, e.g., poly(vinyl acetate), they are directly used as paints (paint latices), coatings, or adhesives (see Sect. 2.5.4). [Pg.63]

The last of the direct methods for graft initiation in liquid phase presented in this review involves chemical additives. Either free radical or ionic initiators can be chosen. Benzoyl peroxide is reported for grafting styrene on Nylon fibers in methanol media (71,105-107), as well as vinyl acetate (106). Azoisobutyro-nitrile has been employed in systems where the graft monomer is styrene (71,106) or vinyl acetate (106). Redox systems involving hydrogen peroxide and monomers like styrene (106,108,109). vinyl acetate (106), acrylic acid (108,109), methyl... [Pg.102]

In contrast the polymerization of vinyl acetate in the presence of polymethyl methacrylate gives after selective precipitation appreciable amounts of pure graft copolymer, independently of the nature of the initiator moreover the degree of grafting, evaluated by infrared spectrometry, is about equally important. Similar results were obtained in the system vinyl acetate-polyethyl a-chloroacryl ate. [Pg.177]

Hart and de Pauw 98) used this emulsion technique on the system vinyl acetate-acrylic acid. It is well known that the copolymerization parameters rx and r2 are unfavorable in this system therefore the relative solubility of the two monomers exerces only a small influence on the composition of both sequences. The degree of homogeneity of the sequences has been evaluated, after alkaline hydrolysis, by measuring the tendency to lactonization in acid medium. While 72% of the acetate groups could be lactonized in the case of a random copolymer containing 37% vinyl acetate, only 14% are transformed in a block copolymer with the same initial composition. [Pg.193]

Applying this method to the system polystyrene/methyl methacrylate, block copolymers containing 20—30% styrene have been prepared the systems polyvinyl acetate/styrene and polyvinyl acetate/ethyl chloroacrylate afford block copolymers containing respectively 40 and 82% vinyl acetate 204). In contrast, the polystyrene prepared using phthalyl polyperoxide was unable to initiate the polymerization of vinyl acetate or vinylpyrrolidone, likely on account of the difference in stability of the concerned radicals. [Pg.201]


See other pages where Vinyl acetate initiation systems is mentioned: [Pg.37]    [Pg.22]    [Pg.245]    [Pg.229]    [Pg.459]    [Pg.463]    [Pg.465]    [Pg.466]    [Pg.466]    [Pg.196]    [Pg.10]    [Pg.11]    [Pg.77]    [Pg.132]    [Pg.122]    [Pg.50]    [Pg.257]    [Pg.62]    [Pg.416]    [Pg.397]    [Pg.235]    [Pg.251]    [Pg.286]    [Pg.355]    [Pg.47]    [Pg.306]    [Pg.101]    [Pg.326]    [Pg.327]    [Pg.120]    [Pg.245]    [Pg.433]   
See also in sourсe #XX -- [ Pg.270 ]




SEARCH



Acetate systems

System vinyl acetate

© 2024 chempedia.info