Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anion radical mechanism

The rigidity of the hexacyclic cage structure of koumine (18) renders some of its chemical behavior quite unusual, for instance, the resistance to Hofmann degradation shown by /Va-acetyldihydrokoumine methyl hydroxide (27). However, owing to the presence of a /J-aromatic imino system in 18, reductive cleavage by sodium-alcohol to yield dihydrokouminol (39) proceeds smoothly. This reaction has been considered to occur through a radical-anion mechanism as indicated in Scheme 12 (27). [Pg.115]

The quite negative reduction potentials of spin traps (Table 2) make them less amenable to participation in the radical anion mechanism, as first established in the cathodic reduction of benzenediazonium salts at a controlled potential in the presence of PBN (Bard et al., 1974). In fact, the lower cathodic limit of the spin trapping method is set not by the nitrone but by the spin adduct formed. [Pg.129]

A variation on the aryne mechanism for nucleophilic aromatic substitution (discussed above, Scheme 2.8) is the SrnI mechanism (see also Chapter 10). Product analysis, with or without radical initiation or radical inhibition, played a crucial role in establishing a radical anion mechanism [21]. The four isomeric bromo- and chloro-trimethylbenzenes (23-X and 25-X, Scheme 2.9) reacted with potassium amide in liquid ammonia, as expected for the benzyne mechanism, giving the same product ratio of 25-NH2/23-NH2 = 1.46. As the benzyne intermediate (24) is unsymmetrical, a 1 1 product ratio is not observed. [Pg.28]

This route is essentially the radical anion mechanism (Eq. (206)) with donor and acceptor being dissimilar. [Pg.125]

Birch reduction, Li can also be used, radical anion mechanism... [Pg.947]

The telechelica,(i -bis(2,6-dimethylphenol)-poly(2,6-dimethylphenyl-ene oxide) (PP0-20H) [174-182] is of interest as a precursor in the synthesis of block copolymers [175] and thermally reactive oligomers [179]. The synthesis has been accomplished by five methods. The first synthetic method was the reaction of a low molecular weight PPO with one phenol chain end with 3,3, 5,5 -tetramethyl-l,4-diphenoquinone. This reaction occurred by a radical mechanism [174]. The second method was the electrophilic condensation of the phenyl chain ends of two PPO-OH molecules with formaldehyde [177,178], The third method consists of the oxidative copolymerization of 2,6-dimethylphenol with 2,2 -di(4-hydroxy-3,5-di-methylphenyl)propane [176-178]. This reaction proceeds by a radical mechanism. A fourth method was the phase transfer-catalyzed polymerization of 4-bromo-2,6-dimethylphenol in the presence of 2,2-di(4-hy-droxy-3,5-dimethylphenyl)propane [181]. This reaction proceeded by a radical-anion mechanism. The fifth method developed was the oxidative coupling polymerization of 2,6-dimethylphenol (DMP) in the presence of tetramethyl bisphenol-A (TMBPA) [Eq. (57)] [182],... [Pg.613]

Radical Anion Mechanism (Modified House Mechanism)... [Pg.667]

This aprotic radical anion mechanism envisages that the crucial hydrogen is transferred as a hydrogen atom within a dimeric cluster type compound. Thus, the termination of the radical anion mechanism amounts to a disproportionation. [Pg.668]

An intramolecular electron-transfer/radical anion mechanism has been advocated for the Truce-Smiles-type rearrangement of t-butyl aryl sulphones by Bu"Li at —78 C, orf Ao-lithiation of the aryl moiety being followed by migration of the t-butyl group to the metallated site. Other methods of C—S bond cleavage that are covered in recent papers include photolysis and electrochemical reduction, ... [Pg.58]

An alternative route to PPS involves polymerization of p-halothiophenols as A-B monomers (26). Copper 4-bromothiophenoxide polymerizes to PPS in quinoline or quinoline/pyridine mixtures at temperatures of 200 - 230 C and atmospheric pressures (31). Mechanistic studies support that polymerization of the copper salt proceeds by an Sj radical-anion mechanism at the early stages of the reaction and may contribute in the later stages of polymerization as well (32). Debromination has been observed as a molecular weight lim-... [Pg.297]

The kind of reaction which produces a dead polymer from a growing chain depends on the nature of the reactive intermediate. These intermediates may be free radicals, anions, or cations. We shall devote most of this chapter to a discussion of the free-radical mechanism, since it readily lends itself to a very general treatment. The discussion of ionic intermediates is not as easily generalized. [Pg.346]

Subsequent studies (63,64) suggested that the nature of the chemical activation process was a one-electron oxidation of the fluorescer by (27) followed by decomposition of the dioxetanedione radical anion to a carbon dioxide radical anion. Back electron transfer to the radical cation of the fluorescer produced the excited state which emitted the luminescence characteristic of the fluorescent state of the emitter. The chemical activation mechanism was patterned after the CIEEL mechanism proposed for dioxetanones and dioxetanes discussed earher (65). Additional support for the CIEEL mechanism, was furnished by demonstration (66) that a linear correlation existed between the singlet excitation energy of the fluorescer and the chemiluminescence intensity which had been shown earher with dimethyl dioxetanone (67). [Pg.266]

The neat resin preparation for PPS is quite compHcated, despite the fact that the overall polymerization reaction appears to be simple. Several commercial PPS polymerization processes that feature some steps in common have been described (1,2). At least three different mechanisms have been pubUshed in an attempt to describe the basic reaction of a sodium sulfide equivalent and -dichlorobenzene these are S Ar (13,16,19), radical cation (20,21), and Buimett s (22) Sj l radical anion (23—25) mechanisms. The benzyne mechanism was ruled out (16) based on the observation that the para-substitution pattern of the monomer, -dichlorobenzene, is retained in the repeating unit of the polymer. Demonstration that the step-growth polymerization of sodium sulfide and /)-dichlorohenzene proceeds via the S Ar mechanism is fairly recent (1991) (26). Eurther complexity in the polymerization is the incorporation of comonomers that alter the polymer stmcture, thereby modifying the properties of the polymer. Additionally, post-polymerization treatments can be utilized, which modify the properties of the polymer. Preparation of the neat resin is an area of significant latitude and extreme importance for the end user. [Pg.442]

There are two problems in the manufacture of PS removal of the heat of polymeriza tion (ca 700 kj /kg (300 Btu/lb)) of styrene polymerized and the simultaneous handling of a partially converted polymer symp with a viscosity of ca 10 mPa(=cP). The latter problem strongly aggravates the former. A wide variety of solutions to these problems have been reported for the four mechanisms described earlier, ie, free radical, anionic, cationic, and Ziegler, several processes can be used. Table 6 summarizes the processes which have been used to implement each mechanism for Hquid-phase systems. Free-radical polymerization of styrenic systems, primarily in solution, is of principal commercial interest. Details of suspension processes, which are declining in importance, are available (208,209), as are descriptions of emulsion processes (210) and summaries of the historical development of styrene polymerization processes (208,211,212). [Pg.521]

Polymerization Reactions. The polymerization of butadiene with itself and with other monomers represents its largest commercial use. The commercially most important polymers are styrene—butadiene mbber (SBR), polybutadiene (BR), styrene—butadiene latex (SBL), acrylonittile—butadiene—styrene polymer (ABS), and nittile mbber (NR). The reaction mechanisms are free-radical, anionic, cationic, or coordinate, depending on the nature of the initiators or catalysts (194—196). [Pg.345]

V,/V dipheny1ethy1enediamine. The cure mechanism probably involves an amine-catalyzed decomposition of the sulfonyl chloride group or a path of radical anions. The cross-link probably involves the HVA-2. Calcium hydroxide or other SO2 absorbers must be included for development of good mechanical properties. [Pg.493]

Experiments in which radical scavengers are added indicate that a chain reaction is involved, because the reaction is greatly retarded in the presence of the scavengers. The mechanism shown below indicates that one of the steps in the chain process is an electron transfer and that none of the steps involves atom abstraction. The elimination of nitrite occurs as a unimolecular decomposition of the radical anion intermediate, and the SrnI mechanistic designation would apply. [Pg.729]

Subsequently Birch and Krapcho and Bothner-By independently postulated the mechanism shown in Eq. (2) and the latter authors presented kinetic data in support of it. Reversible electron addition to the aromatic ring affords a radical-anion (36), the formation of which in other solvents has... [Pg.13]

Various other observations of Krapcho and Bothner-By are accommodated by the radical-anion reduction mechanism. Thus, the position of the initial equilibrium [Eq. (3g)] would be expected to be determined by the reduction potential of the metal and the oxidation potential of the aromatic compound. In spite of small differences in their reduction potentials, lithium, sodium, potassium and calcium afford sufficiently high concentrations of the radical-anion so that all four metals can effect Birch reductions. The few compounds for which comparative data are available are reduced in nearly identical yields by the four metals. However, lithium ion can coordinate strongly with the radical-anion, unlike sodium and potassium ions, and consequently equilibrium (3g) for lithium is shifted considerably... [Pg.15]

The proposed mechanism for the conversion of the furanone 118 to the spiro-cyclic lactones 119 and 120 involves electron transfer to the a -unsaturated methyl ester electrophore to generate an anion radical 118 which cyclizes on the /3-carbon of the furanone. The resulting radical anion 121 acquires a proton, giving rise to the neutral radical 122, which undergoes successive electron transfer and protonation to afford the lactones 119 and 120 (Scheme 38) (91T383). [Pg.130]

Evidence for the radical anion 3 came from esr spectroscopic experiments, thus supporting this mechanism. The radical anion is protonated by the alcohol to give... [Pg.43]

The initiating radicals are assumed to be SCN, ONO or N3 free radicals. Tris oxalate-ferrate-amine anion salt complexes have been studied as photoinitiators (A = 436 nm) of acrylamide polymer [48]. In this initiating system it is proposed that the CO2 radical anion found in the primary photolytic process reacts with iodonium salt (usually diphenyl iodonium chloride salt) by an electron transfer mechanism to give photoactive initiating phenyl radicals by the following reaction machanism ... [Pg.251]

The dimer behaves simultaneously as a radical and as a carban-ion, and thus the radical end might grow by a radical mechanism, anionic polymerization proceeding from the carbanion end. This behavior is particularly interesting when two monomers are present in the system, one polymerizable by a radical but not by an anionic mechanism, the other behaving in the opposite sense. In such a hypothetical case the resulting product would be a block polymer, -A—A. . . A—B—B. . . B-. [Pg.150]


See other pages where Anion radical mechanism is mentioned: [Pg.141]    [Pg.105]    [Pg.83]    [Pg.83]    [Pg.947]    [Pg.137]    [Pg.137]    [Pg.126]    [Pg.129]    [Pg.153]    [Pg.58]    [Pg.129]    [Pg.141]    [Pg.105]    [Pg.83]    [Pg.83]    [Pg.947]    [Pg.137]    [Pg.137]    [Pg.126]    [Pg.129]    [Pg.153]    [Pg.58]    [Pg.129]    [Pg.421]    [Pg.87]    [Pg.398]    [Pg.265]    [Pg.513]    [Pg.429]    [Pg.186]    [Pg.174]    [Pg.466]    [Pg.13]    [Pg.16]    [Pg.191]    [Pg.341]    [Pg.54]    [Pg.193]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Anionic mechanism

Radical mechanism

© 2024 chempedia.info