Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vaporization, azeotropic

The enthalpies of vaporization for the pure components are in excellent agreement with experiment, as is the composition of the azeotrope. The enthalpy of the saturated vapor is also in... [Pg.90]

Convergence is usually accomplished in 2 to 4 iterations. For example, an average of 2.6 iterations was required for 9 bubble-point-temperature calculations over the complete composition range for the azeotropic system ehtanol-ethyl acetate. Standard initial estimates were used. Figure 1 shows results for the incipient vapor-phase compositions together with the experimental data of Murti and van Winkle (1958). For this case, calculated bubble-point temperatures were never more than 0.4 K from observed values. [Pg.120]

VL = vapor-liquid equilibrium data MS = mutual solubility data AZ = azeotropic data... [Pg.144]

In the first class, azeotropic distillation, the extraneous mass-separating agent is relatively volatile and is known as an entrainer. This entrainer forms either a low-boiling binary azeotrope with one of the keys or, more often, a ternary azeotrope containing both keys. The latter kind of operation is feasible only if condensation of the overhead vapor results in two liquid phases, one of which contains the bulk of one of the key components and the other contains the bulk of the entrainer. A t3q)ical scheme is shown in Fig. 3.10. The mixture (A -I- B) is fed to the column, and relatively pure A is taken from the column bottoms. A ternary azeotrope distilled overhead is condensed and separated into two liquid layers in the decanter. One layer contains a mixture of A -I- entrainer which is returned as reflux. The other layer contains relatively pure B. If the B layer contains a significant amount of entrainer, then this layer may need to be fed to an additional column to separate and recycle the entrainer and produce pure B. [Pg.81]

Because of this parallel with liquid-vapor equilibrium, copolymers for which ri = l/r2 are said to be ideal. For those nonideal cases in which the copolymer and feedstock happen to have the same composition, the reaction is called an azeotropic polymerization. Just as in the case of azeotropic distillation, the composition of the reaction mixture does not change as copolymer is formed if the composition corresponds to the azeotrope. The proportion of the two monomers at this point is given by Eq. (7.19). [Pg.430]

Hydrocarbons have, for the most part, replaced CFCs as propellants. Most personal products such as hair sprays, deodorants, and antiperspirants, as well as household aerosols, are formulated using hydrocarbons or some form of hydro-carbon—halocarbon blend. Blends provide customized vapor pressures and, if halocarbons are utilized, a decrease in flammabiUty. Some blends form azeotropes which have a constant vapor pressure and do not fractionate as the contents of the container are used. [Pg.347]

The reactor effluent, containing 1—2% hydrazine, ammonia, sodium chloride, and water, is preheated and sent to the ammonia recovery system, which consists of two columns. In the first column, ammonia goes overhead under pressure and recycles to the anhydrous ammonia storage tank. In the second column, some water and final traces of ammonia are removed overhead. The bottoms from this column, consisting of water, sodium chloride, and hydrazine, are sent to an evaporating crystallizer where sodium chloride (and the slight excess of sodium hydroxide) is removed from the system as a soHd. Vapors from the crystallizer flow to the hydrate column where water is removed overhead. The bottom stream from this column is close to the hydrazine—water azeotrope composition. Standard materials of constmction may be used for handling chlorine, caustic, and sodium hypochlorite. For all surfaces in contact with hydrazine, however, the preferred material of constmction is 304 L stainless steel. [Pg.282]

Anhydrous hydrazine, required for propellant appHcations and some chemical syntheses, is made by breaking the hydrazine—water azeotrope with aniline. The bottom stream from the hydrate column (Fig. 4) is fed along with aniline to the azeotrope column. The overhead aniline—water vapor condenses and phase separates. The lower aniline layer returns to the column as reflux. The water layer, contaminated with a small amount of aniline and hydrazine, flows to a biological treatment pond. The bottoms from the azeotrope column consist of aniline and hydrazine. These are separated in the final hydrazine column to give an anhydrous overhead the aniline from the bottom is recycled to the azeotrope column. [Pg.282]

Pervaporation is a relatively new process with elements in common with reverse osmosis and gas separation. In pervaporation, a liquid mixture contacts one side of a membrane, and the permeate is removed as a vapor from the other. Currendy, the only industrial application of pervaporation is the dehydration of organic solvents, in particular, the dehydration of 90—95% ethanol solutions, a difficult separation problem because an ethanol—water azeotrope forms at 95% ethanol. However, pervaporation processes are also being developed for the removal of dissolved organics from water and the separation of organic solvent mixtures. These applications are likely to become commercial after the year 2000. [Pg.76]

Alkan olamines have high boiling points and under normal ambient conditions their vapor pressures are low. Only DMAMP (see Table 2) forms an azeotrope with water, which boils at 98.4°C and contains 25% by weight of DMAMP. According to current DOT regulations, AMP, AMP-95, DMAMP, DMAMP-80, AEPD, and AB are all classified as combustible Hquids. [Pg.16]

Refrigerant mixtures are divided into two categories, azeotropes and zeotropes. The 500-series refrigerants are classified as azeotropes, since the vapor composition is identical to the Hquid composition at a given pressure. The 400-series refrigerants are classified as zeotropes, because the equiUbrium... [Pg.60]

There is a considerable amount of experimentaldata for properties of mixtures wherein toluene is a principal constituent. Compilations and bibhographies exist for vapor—hquid equihbrium measurements (9,10), hquid—hquid equihbrium measurements (11), and azeotropic data (12,13). [Pg.174]

Vinyl acetate is a colorless, flammable Hquid having an initially pleasant odor which quickly becomes sharp and irritating. Table 1 Hsts the physical properties of the monomer. Information on properties, safety, and handling of vinyl acetate has been pubUshed (5—9). The vapor pressure, heat of vaporization, vapor heat capacity, Hquid heat capacity, Hquid density, vapor viscosity, Hquid viscosity, surface tension, vapor thermal conductivity, and Hquid thermal conductivity profile over temperature ranges have also been pubHshed (10). Table 2 (11) Hsts the solubiHty information for vinyl acetate. Unlike monomers such as styrene, vinyl acetate has a significant level of solubiHty in water which contributes to unique polymerization behavior. Vinyl acetate forms azeotropic mixtures (Table 3) (12). [Pg.458]

Miscellaneous Uses. Research has demonstrated that fabrics could be treated with vaporous trimethyl borate (70% azeotrope) resulting in textiles (qv) that are smoulder resistant (48). [Pg.216]

Recently several patents have been issued (16—18) describing the use of 1,2-dichloroethylene for use in blends of chlorofluorocarbons for solvent vapor cleaning. This art is primarily driven by the need to replace part of the chlorofluorocarbons because of the restriction on their production under the Montreal Protocol of 1987. Test data from the manufacturer show that the cleaning abiUty of these blends exceeds that of the pure chlorofluorocarbons or their azeotropic blends (19). [Pg.20]

In the Type II case, the copolymerization tends toward an alternating arrangement of monomer units. Curve II of Figure 1 shows an example of an alternating copolymer that has an azeotropic copolymer composition, ie, a copolymer composition equal to the monomer feed at a single monomer feed composition. This case is analogous to a constant Foiling mixture ia vapor—Hquid equihbria.T) III... [Pg.178]

Phase Diagrams. For binary mixtures, it is weU known that when a Hquid—Hquid envelope merges with a minimum boiling vapor—Hquid-phase envelope the resulting azeotropic phase diagram has the form shown in Figure 13. When the Hquid composition, as in Figure 13a, then the vapor... [Pg.190]

Fig. 15. Isobaric vapor—liquid—liquid (VLLE) phase diagrams for the ethanol—water—benzene system at 101.3 kPa (D-D) representHquid—Hquid tie-lines (A—A), the vapor line I, homogeneous azeotropes , heterogeneous azeotropes Horsley s azeotropes, (a) Calculated, where A is the end poiat of the vapor line and the numbers correspond to boiling temperatures ia °C of 1, 70.50 2, 68.55 3, 67.46 4, 66.88 5, 66.59 6, 66.46 7, 66.47, and 8, the critical poiat, 66.48. (b) Experimental, where A is the critical poiat at 64.90°C and the numbers correspond to boiling temperatures ia °C of 1, 67 2, 65.5 3, 65.0 ... Fig. 15. Isobaric vapor—liquid—liquid (VLLE) phase diagrams for the ethanol—water—benzene system at 101.3 kPa (D-D) representHquid—Hquid tie-lines (A—A), the vapor line I, homogeneous azeotropes , heterogeneous azeotropes Horsley s azeotropes, (a) Calculated, where A is the end poiat of the vapor line and the numbers correspond to boiling temperatures ia °C of 1, 70.50 2, 68.55 3, 67.46 4, 66.88 5, 66.59 6, 66.46 7, 66.47, and 8, the critical poiat, 66.48. (b) Experimental, where A is the critical poiat at 64.90°C and the numbers correspond to boiling temperatures ia °C of 1, 67 2, 65.5 3, 65.0 ...
Fig. 18. Separation of ethanol from an ethanol—water—benzene mixture using benzene as the entrainer. (a) Schematic representation of the azeo-column (b) material balance lines where I denotes the homogeneous and the heterogeneous azeotropes D, the end points of the Hquid tie-line and A, the overhead vapor leaving the top of the column. The distillate regions, I, II, and III, and the boundaries are marked. Other terms are defined in text. Fig. 18. Separation of ethanol from an ethanol—water—benzene mixture using benzene as the entrainer. (a) Schematic representation of the azeo-column (b) material balance lines where I denotes the homogeneous and the heterogeneous azeotropes D, the end points of the Hquid tie-line and A, the overhead vapor leaving the top of the column. The distillate regions, I, II, and III, and the boundaries are marked. Other terms are defined in text.
Fig. 19. Separation of ethanol and water from an ethanol—water—benzene mixture. Bottoms and are water, B is ethanol, (a) Kubierschky three-column sequence where columns 1, 2, and 3 represent the preconcentration, azeotropic, and entrainer recovery columns, respectively, (b) Material balance lines from the azeotropic and the entrainer recovery columns, A and E, respectively, where represents the overall vapor composition from the azeo-column, 2 1SP Hquid in equiUbrium with overhead vapor composition from the azeo-column, Xj, distillate composition from entrainer... Fig. 19. Separation of ethanol and water from an ethanol—water—benzene mixture. Bottoms and are water, B is ethanol, (a) Kubierschky three-column sequence where columns 1, 2, and 3 represent the preconcentration, azeotropic, and entrainer recovery columns, respectively, (b) Material balance lines from the azeotropic and the entrainer recovery columns, A and E, respectively, where represents the overall vapor composition from the azeo-column, 2 1SP Hquid in equiUbrium with overhead vapor composition from the azeo-column, Xj, distillate composition from entrainer...
Esters of medium volatility are capable of removing the water formed by distillation. Examples are propyl, butyl, and amyl formates, ethyl, propyl, butyl, and amyl acetates, and the methyl and ethyl esters of propionic, butyric, and valeric acids. In some cases, ternary azeotropic mixtures of alcohol, ester, and water are formed. This group is capable of further subdivision with ethyl acetate, all of the ester is removed as a vapor mixture with alcohol and part of the water, while the balance of the water accumulates in the system. With butyl acetate, on the other hand, all of the water formed is removed overhead with part of the ester and alcohol, and the balance of the ester accumulates as a high boiler in the system. [Pg.376]

A summary of physical properties of ethyl alcohol is presented ia Table 1. Detailed information on the vapor pressure, density, and viscosity of ethanol can be obtained from References 6—14. A listing of selected biaary and ternary azeotropes of ethanol is compiled ia Reference 15. [Pg.401]

The two degrees of freedom for this system may be satisfied by setting T and P, or T and t/j, or P and a-j, or Xi and i/i, and so on, at fixed values. Thus, for equilibrium at a particular T and P, this state (if possible at all) exists only at one liquid and one vapor composition. Once the two degrees of freedom are used up, no further specification is possible that would restrict the phase-rule variables. For example, one cannot m addition require that the system form an azeotrope (assuming this possible), for this requires Xi = i/i, an equation not taken into account in the derivation of the phase rule. Thus, the requirement that the system form an azeotrope imposes a special constraint and reduces the number of degrees of freedom to one. [Pg.535]


See other pages where Vaporization, azeotropic is mentioned: [Pg.192]    [Pg.208]    [Pg.192]    [Pg.208]    [Pg.75]    [Pg.284]    [Pg.483]    [Pg.483]    [Pg.69]    [Pg.291]    [Pg.159]    [Pg.159]    [Pg.179]    [Pg.180]    [Pg.182]    [Pg.190]    [Pg.191]    [Pg.192]    [Pg.193]    [Pg.195]    [Pg.197]    [Pg.197]    [Pg.198]    [Pg.198]    [Pg.376]    [Pg.409]    [Pg.1242]   
See also in sourсe #XX -- [ Pg.451 , Pg.461 ]




SEARCH



© 2024 chempedia.info