Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vanadium reactions

The formation of chloroimino ligands has been proposed solely on weak v(C=N) vibrations in the 1600-1750 cm-1 IR region. A repeat of the vanadium reaction by other workers (109) found the product of their reaction to be VC13(CNBu )3, so some caution should be applied to the formulation of the proposed vanadium dimer at least. Substitution reactions on these compounds with a series of mono- and bidentate tertiary phosphorus ligands and metathetical replacements with lithium quinolin-8-olate and sodium diethyl dithiocarbamate have given a range of neutral and cationic products (204, 483). [Pg.289]

Figure 6.5 Structure-activity link between growth of surface carbon, formation of butadiene (BD) and formal oxidation state of vanadium (reaction conditions 0.4 mbar n-butane and 723 K). Figure 6.5 Structure-activity link between growth of surface carbon, formation of butadiene (BD) and formal oxidation state of vanadium (reaction conditions 0.4 mbar n-butane and 723 K).
The dependence of the increase of on the resolvation process was studied by Gorski and the present author [285]. As a model, the V(III)/V(II) system was used. In this system one could follow in a more direct way the resolvation of vanadium ions in several mixed solvents by using spectrophotometry. The results obtained are given in Fig. 16, the upper panel of which shows the change in the rate constant with log (1 - 6) for the vanadium reaction in mixtures of water with DMF, DMPU,... [Pg.280]

Vanadium.— Reaction of pentafluorophenyl-lithium with vanadium tetrachloride in diethyl ether and hexane at — 70 °C yields tetrakis(pentafluoro-phenyl)vanadium, which crystallizes as the dietherate at 0 °C. It is very moisture sensitive, yielding pentafluorobenzene and a trace of perfluoro-biphenyl, and with mercuric chloride in tetrahydrofuran yields bis(penta-fluorophenyl)mercury (95%). [Pg.421]

The reaction uses a fixed-bed vanadium pentoxide-titanium dioxide catalyst which gives good selectivity for phthalic anhydride, providing temperature is controlled within relatively narrow limits. The reaction is carried out in the vapor phase with reactor temperatures typically in the range 380 to 400°C. [Pg.332]

C. Fumaric acid from furfural. Place in a 1-litre three-necked flask, fitted with a reflux condenser, a mechanical stirrer and a thermometer, 112 5 g. of sodium chlorate, 250 ml. of water and 0 -5 g. of vanadium pentoxide catalyst (1), Set the stirrer in motion, heat the flask on an asbestos-centred wire gauze to 70-75°, and add 4 ml. of 50 g. (43 ml.) of technical furfural. As soon as the vigorous reaction commences (2) bvi not before, add the remainder of the furfural through a dropping funnel, inserted into the top of the condenser by means of a grooved cork, at such a rate that the vigorous reaction is maintained (25-30 minutes). Then heat the reaction mixture at 70-75° for 5-6 hours (3) and allow to stand overnight at the laboratory temperature. Filter the crystalline fumaric acid with suction, and wash it with a little cold water (4). Recrystallise the crude fumaric acid from about 300 ml. of iif-hydrochloric acid, and dry the crystals (26 g.) at 100°. The m.p. in a sealed capillary tube is 282-284°. A further recrystaUisation raises the m.p. to 286-287°. [Pg.463]

Acetylation of acetaldehyde to ethyUdene diacetate [542-10-9], a precursor of vinyl acetate, has long been known (7), but the condensation of formaldehyde [50-00-0] and acetic acid vapors to furnish acryflc acid [97-10-7] is more recent (30). These reactions consume relatively more energy than other routes for manufacturing vinyl acetate or acryflc acid, and thus are not likely to be further developed. Vapor-phase methanol—methyl acetate oxidation using simultaneous condensation to yield methyl acrylate is still being developed (28). A vanadium—titania phosphate catalyst is employed in that process. [Pg.66]

Patents claiming specific catalysts and processes for thek use in each of the two reactions have been assigned to Japan Catalytic (45,47—49), Sohio (50), Toyo Soda (51), Rohm and Haas (52), Sumitomo (53), BASF (54), Mitsubishi Petrochemical (56,57), Celanese (55), and others. The catalysts used for these reactions remain based on bismuth molybdate for the first stage and molybdenum vanadium oxides for the second stage, but improvements in minor component composition and catalyst preparation have resulted in yields that can reach the 85—90% range and lifetimes of several years under optimum conditions. Since plants operate under more productive conditions than those optimum for yield and life, the economically most attractive yields and productive lifetimes maybe somewhat lower. [Pg.152]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

The catalyst used in the production of maleic anhydride from butane is vanadium—phosphoms—oxide (VPO). Several routes may be used to prepare the catalyst (123), but the route favored by industry involves the reaction of vanadium(V) oxide [1314-62-1] and phosphoric acid [7664-38-2] to form vanadyl hydrogen phosphate, VOHPO O.5H2O. This material is then heated to eliminate water from the stmcture and irreversibly form vanadyl pyrophosphate, (V(123,124). Vanadyl pyrophosphate is befleved to be the catalyticaHy active phase required for the conversion of butane to maleic anhydride (125,126). [Pg.454]

Only the surface layers of the catalyst soHd ate generaHy thought to participate in the reaction (125,133). This implies that while the bulk of the catalyst may have an oxidation state of 4+ under reactor conditions, the oxidation state of the surface vanadium may be very different. It has been postulated that both V" " and V " oxidation states exist on the surface of the catalyst, the latter arising from oxygen chemisorption (133). Phosphoms enrichment is also observed at the surface of the catalyst (125,126). The exact role of this excess surface phosphoms is not weH understood, but it may play a role in active site isolation and consequently, the oxidation state of the surface vanadium. [Pg.454]

Vanadium phosphoms oxide-based catalysts ate unstable in that they tend to lose phosphoms over time at reaction temperatures. Hot spots in fixed-bed reactors tend to accelerate this loss of phosphoms. This loss of phosphoms also produces a decrease in selectivity (70,136). Many steps have been taken, however, to aHeviate these problems and create an environment where the catalyst can operate at lower temperatures. For example, volatile organophosphoms compounds are fed to the reactor to mitigate the problem of phosphoms loss by the catalyst (137). The phosphoms feed also has the effect of controlling catalyst activity and thus improving catalyst selectivity in the reactor. The catalyst pack in the reactor may be stratified with an inert material (138,139). Stratification has the effect of reducing the extent of reaction pet unit volume and thus reducing the observed catalyst temperature (hot... [Pg.454]

Butane-Based Fixed-Bed Process Technology. Maleic anhydride is produced by reaction of butane with oxygen using the vanadium phosphoms oxide heterogeneous catalyst discussed earlier. The butane oxidation reaction to produce maleic anhydride is very exothermic. The main reaction by-products are carbon monoxide and carbon dioxide. Stoichiometries and heats of reaction for the three principal reactions are as follows ... [Pg.455]

Oxidation. Naphthalene may be oxidized direcdy to 1-naphthalenol (1-naphthol [90-15-3]) and 1,4-naphthoquinone, but yields are not good. Further oxidation beyond 1,4-naphthoquinone [130-15-4] results in the formation of ortho- h. h5 ic acid [88-99-3], which can be dehydrated to form phthaUc anhydride [85-44-9]. The vapor-phase reaction of naphthalene over a catalyst based on vanadium pentoxide is the commercial route used throughout the world. In the United States, the one phthaUc anhydride plant currently operating on naphthalene feedstock utilizes a fixed catalyst bed. The fiuid-bed process plants have all been shut down, and the preferred route used in the world is the fixed-bed process. [Pg.484]

Some phosphides, such as titanium phosphide [12037-65-9] TiP, can be prepared bypassing phosphine over the metal or its haUde. Reaction of phosphine with heavy metal salt solutions often yields phosphines that may contain unsubstituted hydrogens. Phosphides may also be prepared by reducing phosphoms-containing salts with hydrogen, carbon, etc, at high temperatures, the main example of which is the by-product formation of ferrophosphoms in the electric furnace process for elemental phosphoms. Phosphoms-rich phosphides such as vanadium diphosphide [12037-77-3] may be converted to lower phosphides, eg, vanadium phosphide [12066-53-4] by thermal treatment. [Pg.377]

In pigments, 2irconium sHicate serves as the host lattice for various chromophores, such as vanadium, praseodymium, iron, etc. Zirconium sHicate crystals are usuaHy formed in situ during pigment preparation by a high temperature reaction of Zr02 and Si02 ... [Pg.13]

The action of redox metal promoters with MEKP appears to be highly specific. Cobalt salts appear to be a unique component of commercial redox systems, although vanadium appears to provide similar activity with MEKP. Cobalt activity can be supplemented by potassium and 2inc naphthenates in systems requiring low cured resin color lithium and lead naphthenates also act in a similar role. Quaternary ammonium salts (14) and tertiary amines accelerate the reaction rate of redox catalyst systems. The tertiary amines form beneficial complexes with the cobalt promoters, faciUtating the transition to the lower oxidation state. Copper naphthenate exerts a unique influence over cure rate in redox systems and is used widely to delay cure and reduce exotherm development during the cross-linking reaction. [Pg.319]

Nitroxyl radicals of diarylamines can also be obtained on oxidation with hydrogen peroxide in the presence of vanadium ions. Resonance helps stabili2e these radicals. Eor example, the nitroxide from 4,4 -dimethoxydiphenylainine [63619-50-1] is stable for years, whereas the radical from the unsubstituted diphenylamine caimot be isolated. Substitution in the ortho and para positions also increases the stabiUties of these nitroxides by inhibiting coupling reactions at these sites. However, they are not as stable as the stericaHy hindered tetramethylpiperidyl radical. [Pg.243]

The tert-huty hydroperoxide is then mixed with a catalyst solution to react with propylene. Some TBHP decomposes to TBA during this process step. The catalyst is typically an organometaHic that is soluble in the reaction mixture. The metal can be tungsten, vanadium, or molybdenum. Molybdenum complexes with naphthenates or carboxylates provide the best combination of selectivity and reactivity. Catalyst concentrations of 200—500 ppm in a solution of 55% TBHP and 45% TBA are typically used when water content is less than 0.5 wt %. The homogeneous metal catalyst must be removed from solution for disposal or recycle (137,157). Although heterogeneous catalysts can be employed, elution of some of the metal, particularly molybdenum, from the support surface occurs (158). References 159 and 160 discuss possible mechanisms for the catalytic epoxidation of olefins by hydroperoxides. [Pg.138]

Oiganometallic usage is shown in the piepaiation of titanium- oi vanadium-containing catalysts foi the polymerisation of styrene or butadiene by the reaction of dimethyl sulfate with the metal chloride (145). Free-radical activity is proposed for the quaternary product from dimethylaruline and dimethyl sulfate and for the product from l,l,4,4-tetramethyl-2-tetra2ene and dimethyl sulfate (146,147). [Pg.203]


See other pages where Vanadium reactions is mentioned: [Pg.201]    [Pg.767]    [Pg.201]    [Pg.767]    [Pg.417]    [Pg.191]    [Pg.194]    [Pg.1169]    [Pg.667]    [Pg.243]    [Pg.243]    [Pg.391]    [Pg.125]    [Pg.298]    [Pg.489]    [Pg.489]    [Pg.360]    [Pg.457]    [Pg.92]    [Pg.383]    [Pg.458]    [Pg.98]    [Pg.162]    [Pg.506]    [Pg.54]    [Pg.73]    [Pg.41]    [Pg.144]    [Pg.185]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



© 2024 chempedia.info