Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl acetate, oxidation

Acetylation of acetaldehyde to ethyUdene diacetate [542-10-9], a precursor of vinyl acetate, has long been known (7), but the condensation of formaldehyde [50-00-0] and acetic acid vapors to furnish acryflc acid [97-10-7] is more recent (30). These reactions consume relatively more energy than other routes for manufacturing vinyl acetate or acryflc acid, and thus are not likely to be further developed. Vapor-phase methanol—methyl acetate oxidation using simultaneous condensation to yield methyl acrylate is still being developed (28). A vanadium—titania phosphate catalyst is employed in that process. [Pg.66]

The acid anhydrides, compounds of general formula RC(=0)0C(=0)R, are formed in the atmosphere from the atmospheric degradation of esters see chapter vn. For example, formic acetic anhydride, CH3C(0)0CH0, is a product of methyl acetate oxidation (Christensen et al., 2000) ... [Pg.772]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Currently, almost all acetic acid produced commercially comes from acetaldehyde oxidation, methanol or methyl acetate carbonylation, or light hydrocarbon Hquid-phase oxidation. Comparatively small amounts are generated by butane Hquid-phase oxidation, direct ethanol oxidation, and synthesis gas. Large amounts of acetic acid are recycled industrially in the production of cellulose acetate, poly(vinyl alcohol), and aspirin and in a broad array of other... [Pg.66]

This process is one of the three commercially practiced processes for the production of acetic anhydride. The other two are the oxidation of acetaldehyde [75-07-0] and the carbonylation of methyl acetate [79-20-9] in the presence of a rhodium catalyst (coal gasification technology, Halcon process) (77). The latter process was put into operation by Tennessee Eastman in 1983. In the United States the total acetic anhydride production has been reported to be in the order of 1000 metric tons. [Pg.476]

To return to a more historical development the mercuric acetate oxidation of substituted piperidines (77) should be discussed next. This study established that the normal order of hydrogen removal from the aW-carbon is tertiary —C—H > secondary —C—H > primary —C—H, an observation mentioned earlier in this section. The effect of substitution variations in the piperidine series can be summarized as follow s l-mcthyl-2,6-dialkyl and 1-methyl-2,2,6-trialkyl piperidines, as model systems, are oxidized to the corresponding enamines the 1,2-dialkyl and l-methyl-2,5-dialkyl piperidines are oxidized preferentially at the tertiary a-carbon the 1-methyl-2,3-dialkyl piperidines gave not only the enamines formed by oxidation at the tertiary a-carbon but also hydroxylated enamines as found for 1-methyl-decahydroquinoline (48) (62) l-methyl-2,2,6,6-tctraalkyl piperidines and piperidine are resistant to oxidation by aqueous mercuric acetate and... [Pg.71]

Extension of these studies to medium rings produced interesting results (73). The mercuric acetate oxidation of 1-methyl-1-azacyclooctane (64), when worked up in the usual manner, gave no distillable material. When an equivalent amount of hydrochloric acid was added to the solution which had been saturated with hydrogen sulfide to precipitate the excess mercuric acetate and filtered, evaporation of the solution to dryness gave a solid which was subsequently identified as 2,4,6-tris(6 -methylaminohexyl)-trithiane trihydrochloride (65). Two plausible routes to the observed... [Pg.72]

The lithium- -propylamine reducing system has been found capable of reducing julolidine (113) to /d -tetrahydrojulolidine (114, 66% yield) and 1-methyl-1,2,3,4-tctrahydroquinoline to a mixture of enamines (87% yield), l-methyl-J -octahydroquinoline (115) and 1-methyl-al -octahydro-quinoline (116) 102). This route to enamines of bicyclic and tricyclic systems avoids hydroxylation, which occurs during mercuric acetate oxidation of certain bicyclic and tricyclic tertiary amines 62,85 see Section III.A). [Pg.82]

The formation of an enamine from an a,a-disubstituted cyclopentanone and its reaction with methyl acrylate was used in a synthesis of clovene (JOS). In a synthetic route to aspidospermine, a cyclic enamine reacted with methyl acrylate to form an imonium salt, which regenerated a new cyclic enamine and allowed a subsequent internal enamine acylation reaction (309,310). The required cyclic enamine could not be obtained in this instance by base isomerization of the allylic amine precursor, but was obtained by mercuric acetate oxidation of its reduction product. Condensation of a dihydronaphthalene carboxylic ester with an enamine has also been reported (311). [Pg.362]

Acetate may also be converted into methane by a few methanogens belonging to the genus Meth-anosarcina. The methyl group is initially converted into methyltetrahydromethanopterin (corresponding to methyltetrahydrofolate in the acetate oxidations discussed above) before reduction to methane via methyl-coenzyme M the carbonyl group of acetate is oxidized via bound CO to CO2. [Pg.319]

The highest autoinflammation temperatures are obtained when the container is made of glass. With a metai container not only are the values low but they also depend on the state of the metal surface and especially on the potential presence of oxides that play a catalytic role. A drop in temperature can then reach at least 50°C with substances that have AIT greater than 290°C. The effect of the material of the container varies hugely depending on the substance. Thus the AIT results are the same for toluene with glass and metal whereas with methyl acetate they are respectively 502 and 464°C. But is it due to the presence of oxides ... [Pg.72]

ETHYLENE GLYCOL ETHYL MERCAPTAN DIMETHYL SULPHIDE ETHYL AMINE DIMETHYL AMIDE MONOETHANOLAMINE ETHYLENEDIAMINE ACRYLONITRILE PROPADIENE METHYL ACETYLENE ACROLEIN ACRYLIC ACID VINYL FORMATE ALLYL CHLORIDE 1 2 3-TRICHLOROPROPANE PROPIONITRILE CYCLOPROPANE PROPYLENE 1 2-DICHLOROPROPANE ACETONE ALLYL ALCOHOL PROPIONALDEHYDE PROPYLENE OXIDE VINYL METHYL ETHER PROPIONIC ACID ETHYL FORMATE METHYL ACETATE PROPYL CHLORIDE ISOPROPYL CHLORIDE PROPANE... [Pg.942]

Another specific and important aspect to consider is the possibility that an environmentally heterogeneous photocatalyst can lead to the undesirable formation of reaction intermediates which are more toxic than the starting reagents. For instance, the Ti02-based photodegradation of ethanol, a relatively innocuous air pollutant, occurs through its transformation into the more toxic acetaldehyde. Condensation reactions can also lead to the formation of traces of methyl formate, ethyl formate, or methyl acetate. Catalyst design is therefore important to increase the overall oxidation rate to ensure complete mineralization (formation of C02 and H20). [Pg.121]

Other companies (e.g., Hoechst) have developed a slightly different process in which the water content is low in order to save CO feedstock. In the absence of water it turned out that the catalyst precipitates. Clearly, at low water concentrations the reduction of rhodium(III) back to rhodium(I) is much slower, but the formation of the trivalent rhodium species is reduced in the first place, because the HI content decreases with the water concentration. The water content is kept low by adding part of the methanol in the form of methyl acetate. Indeed, the shift reaction is now suppressed. Stabilization of the rhodium species and lowering of the HI content can be achieved by the addition of iodide salts. High reaction rates and low catalyst usage can be achieved at low reactor water concentration by the introduction of tertiary phosphine oxide additives.8 The kinetics of the title reaction with respect to [MeOH] change if H20 is used as a solvent instead of AcOH.9 Kinetic data for the Rh-catalyzed carbonylation of methanol have been critically analyzed. The discrepancy between the reaction rate constants is due to ignoring the effect of vapor-liquid equilibrium of the iodide promoter.10... [Pg.144]

The reaction of alcohols with CO was catalyzed by Pd compounds, iodides and/or bromides, and amides (or thioamides). Thus, MeOH was carbonylated in the presence of Pd acetate, NiCl2, tV-methylpyrrolidone, Mel, and Lil to give HOAc. AcOH is prepared by the reaction of MeOH with CO in the presence of a catalyst system comprising a Pd compound, an ionic Br or I compound other than HBr or HI, a sulfone or sulfoxide, and, in some cases, a Ni compound and a phosphine oxide or a phosphinic acid.60 Palladium(II) salts catalyze the carbonylation of methyl iodide in methanol to methyl acetate in the presence of an excess of iodide, even without amine or phosphine co-ligands platinum(II) salts are less effective.61 A novel Pd11 complex (13) is a highly efficient catalyst for the carbonylation of organic alcohols and alkenes to carboxylic acids/esters.62... [Pg.148]

Using the mercuric acetate oxidation-zinc powder reduction method, 277 and methyl ( )-geissoschizoate (276) were obtained in about a 3 1 ratio. Formyla-tion of 276 with methyl formate in the presence of lithium diisopropylamide yielded ( )-geissoschizine as the sole product (156). [Pg.191]

Furthermore, even the ligand, necessary to stabilize the catalyst, can reduce Pd(II) to Pd(0) complexes and formation of phosphine oxides [62-64], In the preparation of [Pd(AcO)2(dppp)], from Pd(AcO)2 and dppp in MeOH, phosphine oxides have been found to form together with methyl acetate and palladium metal [65]. The reaction can be schematized as follows ... [Pg.138]

Evidence has been presented that iodide salts can promote the oxidative addition of Mel to [Rh(CO)2l2]"> the rate-determining step in the Rh cycle [12]. The precise mechanism of this promotion remains unclear formation of a highly nucleophilic dianion, [Rh(CO)2l3]2 , has been suggested, although there is no direct spectroscopic evidence for its detection. Possible participation of this dianion has been considered in a theoretical study [23]. An alternative nucleophilic dianion, [Rh(CO)2l2(OAc)]2 , has also been proposed [31,32] on the basis that acetate salts (either added or generated in situ via Eq. 7) can promote carbonylation. Iodide salts have also been found to be effective promoters for the anhydrous carbonylation of methyl acetate to acetic anhydride [33]. In the absence of water, the catalyst cannot be maintained in its active form ([Rh(CO)2l2]") by addition of Lil alone, and some H2 is added to the gas feed to reduce the inactive [Rh(CO)2l4]. ... [Pg.193]

PROPYLENE OXIDE ETHYL FORMATE METHYL ACETATE PROPIONIC ACID 3-MERCAPTOPROPIONIC ACID LACTIC ACID METHOXYACETIC ACID TRIOXANE THIACYCLOBUTANE 1-BROMOPROPANE... [Pg.7]


See other pages where Methyl acetate, oxidation is mentioned: [Pg.67]    [Pg.69]    [Pg.180]    [Pg.181]    [Pg.183]    [Pg.438]    [Pg.514]    [Pg.284]    [Pg.72]    [Pg.74]    [Pg.84]    [Pg.152]    [Pg.584]    [Pg.10]    [Pg.323]    [Pg.302]    [Pg.238]    [Pg.143]   
See also in sourсe #XX -- [ Pg.473 , Pg.477 ]




SEARCH



Acetalization-oxidation

Acetals methylation

Acetals oxidation

Acetate oxidation

Acetates methylated

Acetic oxide

Methyl 3-oxid

Methyl acetals

Methyl acetate

Methyl acetate, from oxidation

Methyl oxide

Methyl, oxidation

© 2024 chempedia.info