Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absolute vacuum

Vacuum in process systems refers to an absolute pressure that is less than or below the local barometric pressure at the location. It is a measure of the degree of removal of atmospheric pressure to some level between atmospheric-barometer and absolute vacuum (which cannot be attained in an absolute value in the real world), but is used for a reference of measurement. In most situations, a vacuum is created by pumping air out of the container (pipe, vessels) and thereby lowering the pressure. See Figure 2-1 to distinguish between vacuum gauge and vacuum absolute. [Pg.128]

Vacuum Absolute Water Pump Mercury Manometer Manometer... [Pg.150]

These effects are considered for four levels of vacuum (absolute presstrre) each with four different common deaning solvents. The results are tabulated in Table 4.5. [Pg.200]

The silver nitrite may be prepared as described in Section 11,50, 17. The product supplied by Johnson, Matthey and Co. Ltd., of Hatton Garden, London, E.C. 1, is satisfactory it. should be washed with absolute methyl or ethyl alcohol, followed by sodium-dried ether, and dried in an electrically-heated oven at 100 for 30 minutes (longer heating results in darkening on the surface) the substance should be kept in a vacuum desiccator until required. [Pg.307]

Mix 50 ml. of formalin, containing about 37 per cent, of formaldehyde, with 40 ml. of concentrated ammonia solution (sp. gr. 0- 88) in a 200 ml. round-bottomed flask. Insert a two-holed cork or rubber stopper carrying a capillary tube drawn out at the lower end (as for vacuum distillation) and reaching almost to the bottom of the flask, and also a short outlet tube connected through a filter flask to a water pump. Evaporate the contents of the flask as far as possible on a water bath under reduced pressure. Add a further 40 ml. of concentrated ammonia solution and repeat the evaporation. Attach a reflux condenser to the flask, add sufficient absolute ethyl alcohol (about 100 ml.) in small portions to dissolve most of the residue, heat under reflux for a few minutes and filter the hot alcoholic extract, preferably through a hot water fuimel (all flames in the vicinity must be extinguished). When cold, filter the hexamine, wash it with a little absolute alcohol, and dry in the air. The yield is 10 g. Treat the filtrate with an equal volume of dry ether and cool in ice. A fiulher 2 g. of hexamine is obtained. [Pg.326]

Into a 500 ml. round-bottomed flask, fitted with a reflux condenser, place 42 g. of potassium hydroxide pellets and 120 g. (152 ml.) of absolute ethyl alcohol. Heat under reflux for 1 hour. Allow to cool and decant the liquid from the residual solid into another dry 500 ml. flask add 57 g. (45 ml.) of A.R. carbon dtsulphide slowly and with constant shaking. Filter the resulting almost solid mass, after cooling in ice, on a sintered glass funnel at the pump, and wash it with two 25 ml. portions of ether (sp. gr. 0-720), followed by 25 ml. of anhydrous ether. Dry the potassium ethyl xanthate in a vacuum desiccator over silica gel. The yield is 74 g. If desired, it ma be recrystallised from absolute ethyl alcohol, but this is usually unneceasary. [Pg.499]

If one is absolutely serious about ultra pure safrole then it can be separated from the eugenol-free sassafras oil by treatment with mercuric acetate [1,2,3,4] which likes that terminal double bond that only safrole has. The Hg(AcO)2 latches on to safrole at that double bond bringing it into solution as a solid sort of like the way that eugenol was. The safrole can then be separated from its still oily buddies by vacuum filtration. Safrole is then regenerated to its normal oily form by treatment with hydrochloric acid (HCI) which flicks the Hg(AcO)2 off the safrole and the safrole double bond reforms. As it so happens, the mercuric acetate also reforms intact so that it can be reused again such as in one of those... [Pg.34]

Purification of the Methylamine HCI is in order now, so transfer all of the crude product to a 500mL flask and add either 250mL of absolute Ethanol (see end of FAQ for preparing this) or, ideally, n-Butyl Alcohol (see Footnote 4). Heat at reflux with a Calcium Chloride guard tube for 30 minutes. Allow the undissolved solids to settle (Ammonium Chloride) then decant the clear solution and cool quickly to precipitate out Methylamine HCI. Filter rapidly on the vacuum Buchner funnel and transfer crystals to a dessicator (see Footnote 3). Repeat the reflux-settle-cool-filter process four... [Pg.269]

To absolution of 1.00 mol of ethyl lithium in 800-900 ml of diethyl ether (see Chapter II, Exp. 1) was added, with cooling between -20 and -10°C, 0.50 nol of dry propargyl alcohol, dissolved in 100 ml of diethyl ether. Subsequently 1.1 mol of trimethylchlorosilane was introduced over a period of 25 min with cooling between -15 and +5°C. After stirring for an additional 2 h at about 30°C the suspension was poured into a solution of 30 g of acetic acid in 150 ml of water. After stirring for 1 h at room temperature the layers were separated and the aqueous layer v/as extracted four times with diethyl ether. The combined ethereal solutions were washed with sodium hydrogen carbonate solution in order to neutralize acetic acid, and were then dried over magnesium sulfate. The diethyl ether was removed by evaporation in a water-pump vacuum and the residue distilled... [Pg.58]

The so-called hyperbar vacuum filtration is a combination of vacuum and pressure filtration in a pull—push arrangement, whereby a vacuum pump of a fan generates vacuum downstream of the filter medium, while a compressor maintains higher-than-atmospheric pressure upstream. If, for example, the vacuum produced is 80 kPa, ie, absolute pressure of 20 kPa, and the absolute pressure before the filter is 150 kPa, the total pressure drop of 130 kPa is created across the filter medium. This is a new idea in principle but in practice requires three primary movers a Hquid pump to pump in the suspension, a vacuum pump to produce the vacuum, and a compressor to supply the compressed air. The cost of having to provide, install, and maintain one additional primary mover has deterred the development of hyperbar vacuum filtration only Andrit2 in Austria offers a system commercially. [Pg.407]

The inactivity of pure anhydrous Lewis acid haUdes in Friedel-Crafts polymerisation of olefins was first demonstrated in 1936 (203) it was found that pure, dry aluminum chloride does not react with ethylene. Subsequentiy it was shown (204) that boron ttifluoride alone does not catalyse the polymerisation of isobutylene when kept absolutely dry in a vacuum system. However, polymers form upon admission of traces of water. The active catalyst is boron ttifluoride hydrate, BF H20, ie, a conjugate protic acid H" (BF20H) . [Pg.564]

Vacuum flash processes, which operate under the atmospheric boiling point of the solution, include the Uhde—LG. Farbenindustrie process and the closely related Kestner process (22). In these, ammonia, nitric acid, and recirculated ammonium nitrate solution are fed into the neutralizer. Hot solution overflows to an intermediate tank and then to a flash evaporator kept at 18—20 kPa (0.18—0.2 atm) absolute pressure. Partial evaporation of water at this point cools and concentrates the solution, part of which is routed to evaporation. The rest is circulated to the neutralizer. [Pg.366]

Absolute pressure is pressure measured relative to a perfect vacuum, an absolute 2ero of pressure (2). Like the absolute 2ero of temperature, perfect vacuum is never reali2ed in a real world system but provides a convenient reference for pressure measurement. The acceptance of strain gauge technology in the fabrication of pressure sensors is resulting in the increased use of absolute pressure measurement in the CPI (see Sensors). The pressure reference... [Pg.19]

Pressure and Vacuum. Pressure is usually designated as gauge pressure, absolute pressure, or, if below ambient, vacuum. Pressures are expressed in pascals with appropriate prefixes. When the term vacuum is used, it should be made clear whether negative gauge pressure or absolute pressure is meant. The correct way to express pressure readings is "at a gauge pressure of 13 kPa" or "at an absolute pressure of 13 kPa."... [Pg.310]

Partial Concentration. The sum of the partial concentrations (pressures) in a free molecular gas is equal to the total concentration (pressure). However, all gaseous components, at the same partial pressure or absolute pressure or ratios thereof, are not likely to have the same significance to any or all vacuum appHcations. The significance of the condensed-phase concentrations must therefore be considered. [Pg.367]

Molecules arrive at the surfaces of traps and baffles by volume flow and surface creep. Molecules are trapped in vacuum systems by binding with energies much greater than kT of the surface, where k is Boltzmann s constant and Tthe absolute temperature, or by lowering the temperature of the surface in such a way that kT is less than the heat of physisorption of a molecular species on a surface. [Pg.378]

Absolute = 1.72 bar. Hydrocracked vacuum gas oil. Maximized ethylene product. Nonaromatic. [Pg.437]

Vacuum flow is usually described with flow variables different from those used for normal pressures, which often leads to confusion. Pumping speed S is the actual volumetric flow rate of gas through a flow cross section. Throughput Q is the product of pumping speed and absolute pressure. In the SI system, Q has units of Pa m vs. [Pg.641]

Strain-gauge pressure transducers are manufactured in many forms for measuring gauge, absolute, and differential pressures and vacuum. Full-scale ranges from 25.4 mm of water to 10,134 MPa are available. Strain gauges bonded direc tly to a diaphragm pressure-sensitive element usually have an extremely fast response time and are suitable for high-frequency dynamic-pressure measurements. [Pg.762]

Closed U tubes (Fig. 10-10) using mercuiy as the manometric fluid serve to measure direclly the absolute pressure p of a fluid, provided that the space between the closed end and the mercury is substantially a perfect vacuum. [Pg.890]

Diffusion pumps operate at veiy low pressures. The ultimate vacuum attainable depends somewhat upon the vapor pressure of the pump liquid at the temperature of the condensing surfaces. By providing a cold trap between the diffusion pump and the region being evacuated, pressures as low as 10 mmHg absolute are achieved in... [Pg.936]

Control of trav and compartment equipment is usually maintained by control of the circulating-air temperature (and humidiy) and rarely by solids temperature. On vacuum units, control of the absolute pressure and heating-medium temperature is utihzed. In direct dryers, cycle controllers are frequently employed to vary the air temper-... [Pg.1190]

The vacuum plate drwer is provided as pari of a closed system. The vacuum dryer has a cylindrical housing and is rated for fiill-vacuum operation (typical pressure range 3-27 kPa absolute). The exhaust vapor is evacuated try a vacuum pump and is passed through a condenser for solvent recovery. There is no purge-gas system required for operation under vacuum. Of special note in the vacuum-drying system... [Pg.1216]

Comparison Data—Plate Dryers Comparative studies have been done on products under both atmospheric and vacuum drying conditions. See Fig. 12-79. These curves demonstrate (1) the improvement in drying achieved with elevated temperature and (2) the impact to the drying process obtained with vacuum operation. Note that cui ve 4 at 90°C, pressure at 6.7 kPa absolute, is comparable to the atmospheric cui ve at 150°C. Also, the comparative atmospheric cui ve at 90°C requires 90 percent more diying time than the vacuum condition. The dramatic improvement with the use of vacuum is important to note for heat-sensitive materials. [Pg.1217]

Example 1 Selection of Vacuum If a turbine is to he operated with exhaust to a condenser vacuum that will give 3 inHg absolute in the summer and 1 inHg absolute in the winter, what vacuum should be specified ... [Pg.2502]


See other pages where Absolute vacuum is mentioned: [Pg.20]    [Pg.53]    [Pg.129]    [Pg.53]    [Pg.129]    [Pg.873]    [Pg.767]    [Pg.20]    [Pg.53]    [Pg.129]    [Pg.53]    [Pg.129]    [Pg.873]    [Pg.767]    [Pg.148]    [Pg.206]    [Pg.616]    [Pg.188]    [Pg.941]    [Pg.977]    [Pg.69]    [Pg.270]    [Pg.429]    [Pg.400]    [Pg.97]    [Pg.91]    [Pg.155]    [Pg.310]    [Pg.388]    [Pg.1219]    [Pg.1435]   
See also in sourсe #XX -- [ Pg.53 ]




SEARCH



Absolute permittivity of vacuum

Absolute vacuum mercury

Absolute vacuum mercury manometer

Example 6-1 Conversion of Inches Vacuum to Absolute

© 2024 chempedia.info