Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated polyester resin Properties

Uses. About 35% of the isophthahc acid is used to prepare unsaturated polyester resins. These are condensation products of isophthahc acid, an unsaturated dibasic acid, most likely maleic anhydride, and a glycol such as propylene glycol. The polymer is dissolved in an inhibited vinyl monomer, usually styrene with a quinone inhibitor. When this viscous hquid is treated with a catalyst, heat or free-radical initiation causes cross-linking and sohdification. A range of properties is possible depending on the reactants used and their ratios (97). [Pg.494]

Thermosetting unsaturated polyester resins constitute the most common fiber-reinforced composite matrix today. According to the Committee on Resin Statistics of the Society of Plastics Industry (SPl), 454,000 t of unsaturated polyester were used in fiber-reinforced plastics in 1990. These materials are popular because of thek low price, ease of use, and excellent mechanical and chemical resistance properties. Over 227 t of phenoHc resins were used in fiber-reinforced plastics in 1990 (1 3). PhenoHc resins (qv) are used when thek inherent flame retardance, high temperature resistance, or low cost overcome the problems of processing difficulties and lower mechanical properties. [Pg.18]

Unsaturated polyester resins predominate among fiber-reinforced composite matrices for several reasons. A wide variety of polyesters is available and the composites fabricator must choose the best for a particular appHcation. The choice involves evaluation of fabrication techniques, temperatures at which the resin is to be handled, cure time and temperature desked, and requked cured properties (see Polyesters, unsaturated). [Pg.18]

This is also known as Bulk Moulding Compound (BMC). It is blended through a mix of unsaturated polyester resin, crosslinking monomer, catalyst, mineral fillers and short-length fibrous reinforcement materials such as chopped glass fibre, usually in lengths of 6-25 mm. They are all mixed in different proportions to obtain the required electromechanical properties. The mix is processed and cured for a specific time, under a prescribed pressure and temperature, to obtain the DMC. [Pg.369]

The applications of the unsaturated polyester resins were increased in the late 1960s by the introduction of water-extended polyesters. In these materials water is dispersed into the resin in very tiny droplets (ca 2-5 p.m diameter). Up to 90% of the system can consist of water but more commonly about equal parts of resin and water are used. The water component has two basic virtues in this system it is very cheap and because of its high specific heat it is a good heat sink for moderating cure exotherms and also giving good heat shielding properties of interest in ablation studies. [Pg.708]

Nowadays the major thermosetting resins used in conjunction with glass fibre reinforcement are unsaturated polyester resins and to a lesser extent epoxy resins. The most important advantages which these materials can offer are that they do not liberate volatiles during cross-linking and they can be moulded using low pressures at room temperature. Table 3.1 shows typical properties of fibre reinforced epoxy. [Pg.170]

The surface energy of fibers is closely related to the hydrophilicity of the fiber [38]. Some investigations are concerned with methods to decrease hydrophilicity. The modification, of wood cellulose fibers with stearic acid [43] hydrophobizes those fibers and improves their dispersion in polypropylene. As can be observed in jute-reinforced unsaturated polyester resin composites, treatment with polyvinylacetate increases the mechanical properties [24] and moisture repellency. [Pg.796]

Superior Environmental Products, Inc. introduced a product based on liquid poly sulfide containing 40% of a surface-modified scrap tire mbber. The product, ER-IOOR, is a coating that can temporarily contain chemical, oil, and gasoline spills. Rodriguez [97] reported that an unsaturated polyester resin containing silane-treated CGR showed better mechanical properties than that containing untreated CGR. [Pg.1055]

Methods for achieving low styrene emissions in the unsaturated polyester resin industry are discussed. The necessity for new formulations to maintain the same mechanical properties as the previous ones is considered. The environmental requirements and working conditions that make essential the development of new formulations and processes that reduce volatile emissions are examined. The need for factories to adopt alternative technologies in order to comply with the latest environmental restrictions is discussed. 12 refs. [Pg.27]

Finally, glass-reinforced unsaturated polyesters are well known as building materials for boats, yachts and cars and generally termed fibre-glass resin . The preparation, properties and applications of these unsaturated polyesters are summarized in Chapter 21, while the chemistry and properties of a new unsaturated polyester resin for fibre-reinforced composite materials are discussed in Chapter 22. [Pg.1]

Table 21.2 provides a general guide to the effect that chemical constituents can have on unsaturated polyester resin end-use performance. The routes to change an unsaturated polyester resin for a particular application is normally apparent and there can be several pathways available to achieve the desired properties. As the unsaturated polyester resin markets are highly competitive, raw material cost usually reduces the number of available routes available to the formulator. As noted previously, there are three main types or families of unsaturated polyesters, namely general purpose orthophthalic, isophthalic and DCPD resins. However, within each of these families, there are hundreds of variants that incorporate these various chemical constituents in different combinations and permutations to achieve the desired results. [Pg.706]

In addition, fillers can be used for both cost reduction and property modification. Table 21.3 presents some examples of typical fillers and their effects on the unsaturated polyester resin formulation properties. [Pg.707]

Since unsaturated polyester resins alone would have insufficient strength for structural application, reinforcements are used to enhance the physical strength of such resins. Typically, tensile strength, impact strength and stiffness are the physical properties of most interest. Reinforcements can be regular particulates, as in glass microspheres, irregular particulates, as in flakes, or fibers. [Pg.707]

Propanediol. In its racemic form, 1,2-propanediol is a petroleum-based high-volume chemical with an aimual production of over 500,0001, mostly used to manufacture the unsaturated polyester resins, yet also featuring excellent antifreeze properties. Enantiomerically pure (/ )-1,2-propanediol accumulates along two different pathways via DAHP (3-deoxy-D-flrahmo-heptulosonic acid 7-phosphate) and methylglyoxal, which then is reduced with either... [Pg.41]

Materials that have been used in pyrotechnic mixtures include nitrocellulose, polyvinyl alcohol, stearic acid, hexamethylenetetra mine, kerosene, epoxy resins, and unsaturated polyester resins such as Laminae. The properties of most of these fuels can be... [Pg.47]

The acid-base properties of polymers, fillers and silane additives, as described by Fowkes [14] can be used to predict the effect of silanes on the dispersion of fillers in polymer, and viscosity of the mix. In general, opposites attract (give good dispersion) while like materials repel (poor dispersion) [15]. The effect of cationic silane (Z-6032) on the dispersion of silica (acidic filler) in this particular unsaturated polyester resin (acidic polymer) is shown in Table 6. Addition of Z-6032 in increments to a silica-filled polyester resin lowered the viscosity of the mixture to a minimum at about 0.4% silane based on the filler. [Pg.12]

Alkyds are formulated from polyester resins, cross-linking monomers, and fillers of mineral or glass. The unsaturated polyester resins used for thermosetting alkyds are the reaction products of polyfunctional organic alcohols (glycols) and dibasic organic acids. Key properties of alkyds are dimensional stability, colorability, and arc track resistance. Chemical resistance, however, is generally poor. [Pg.902]

This is a low cost material with limited fire-retardant properties. It has a low onset of decomposition (under 100°C), but it is reported to find some use as a fire retardant in unsaturated polyester resins.7... [Pg.167]

Epoxy vinyl ester resins are a special class of unsaturated resin. This resin is made by capping an epoxy resin with methacrylic acid and then dissolving in styrene monomer to the desired viscosity. This gives mechanical properties similar to epoxy resins, but the processibility (low viscosity allowing for resin infusion processes) of an unsaturated polyester resin. As with unsaturated vinyl esters, the most common fire retardant vinyl ester resin is based on a resin made from a halogenated system, tetrabromobisphenol A. The level of bromine in the resin and the presence of antimony will determine the fire performance of the resin. These resins are normally used for corrosion resistant equipment or when fire performance and high mechanical properties are required. It is very difficult to get a low smoke value with a brominated vinyl ester resin again due to the fact that bromine... [Pg.705]

Alkyds. Alkyd resins consist of a combination of unsaturated polyester resins, a monomer, and fillers. Alkyd compounds generally contain glass fiber filler, but they may also include clay, calcium carbonate, alumina, and other fillers. Alkyds have good heat, chemical, and water resistance, and they have good arc resistance and electrical properties. Alkyds are easy to mold and economical to use. Postmolding shrinkage is small. Then-greatest limitation is extremes of temperature (above 175°C) and humidity. [Pg.363]

To overcome these drawbacks, in recent years much attention has been paid to the development of resins which cem be f2d ricated with the same processes as those for conventional polyester resins, but having superior properties. Vinyl ester resins are the result of such development efforts (4-6). Vinyl ester resins are addition products of Vcurious epoxide resins and ethylenically unsaturated mono-carboxylic acids ( ). It condsines the excellent mechcuiical, chemical cuid solvent resistemce of epoxy resins with the properties found in the unsaturated polyester resins. In general, the cured vinyl ester resin has physical properties superior to the cured conventional ester resin, particulcurly corrosion resistcuice. This arises from the differences in the number and arremgement of polar groups such as ester and hydroxyl groups eind ccurbon-to-ccirbon double bonds present in the polymer chains. [Pg.202]


See other pages where Unsaturated polyester resin Properties is mentioned: [Pg.247]    [Pg.470]    [Pg.354]    [Pg.321]    [Pg.7]    [Pg.19]    [Pg.422]    [Pg.814]    [Pg.30]    [Pg.41]    [Pg.70]    [Pg.99]    [Pg.465]    [Pg.140]    [Pg.705]    [Pg.705]    [Pg.708]    [Pg.715]    [Pg.354]    [Pg.321]    [Pg.1688]    [Pg.3]    [Pg.106]    [Pg.7]    [Pg.15]    [Pg.167]    [Pg.705]    [Pg.95]    [Pg.247]   
See also in sourсe #XX -- [ Pg.98 ]




SEARCH



Polyester resins

Polyester resins resin

Polyester resins unsaturated

Properties of Unsaturated Polyester Resins

Resins unsaturated

Resins, properties

Unsaturated polyesters

© 2024 chempedia.info