Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultrasound formation

Whereas, Goharshadi et al. [16] have synthesized the ZnO nanoparticles of 60 nm (Fig. 8.4.) using a room temperature ionic liquid, l-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide, Formation of ZnO was not observed when the ionic liquid was replaced by water. Also, in the absence of ultrasound, formation of ZnO was not observed which is very similar to the one as proposed in the previous case of ZnO dendritic nanostructures. [Pg.196]

Homogeneous Sonochemistry Bond Breaking and Radical Formation. The chemical effect of ultrasound on aqueous solutions have been studied for many years. The primary products are H2O2 there is strong evidence for various high-energy intermediates, including HO2,... [Pg.262]

Membranes and Osmosis. Membranes based on PEI can be used for the dehydration of organic solvents such as 2-propanol, methyl ethyl ketone, and toluene (451), and for concentrating seawater (452—454). On exposure to ultrasound waves, aqueous PEI salt solutions and brominated poly(2,6-dimethylphenylene oxide) form stable emulsions from which it is possible to cast membranes in which submicrometer capsules of the salt solution ate embedded (455). The rate of release of the salt solution can be altered by surface—active substances. In membranes, PEI can act as a proton source in the generation of a photocurrent (456). The formation of a PEI coating on ion-exchange membranes modifies the transport properties and results in permanent selectivity of the membrane (457). The electrochemical testing of salts (458) is another possible appHcation of PEI. [Pg.14]

The use of ultrasonic (US) radiation (typical range 20 to 850 kHz) to accelerate Diels-Alder reactions is undergoing continuous expansion. There is a parallelism between the ultrasonic and high pressure-assisted reactions. Ultrasonic radiations induce cavitation, that is, the formation and the collapse of microbubbles inside the liquid phase which is accompanied by the local generation of high temperature and high pressure [29]. Snyder and coworkers [30] published the first ultrasound-assisted Diels-Alder reactions that involved the cycloadditions of o-quinone 37 with appropriate dienes 38 to synthesize abietanoid diterpenes A-C (Scheme 4.7) isolated from the traditional Chinese medicine, Dan Shen, prepared from the roots of Salvia miltiorrhiza Bunge. [Pg.154]

Unsymmetrical as well as symmetrical anhydrides are often prepared by the treatment of an acyl halide with a carboxylic acid salt. The compound C0CI2 has been used as a catalyst. If a metallic salt is used, Na , K , or Ag are the most common cations, but more often pyridine or another tertiary amine is added to the free acid and the salt thus formed is treated with the acyl halide. Mixed formic anhydrides are prepared from sodium formate and an aryl halide, by use of a solid-phase copolymer of pyridine-l-oxide. Symmetrical anhydrides can be prepared by reaction of the acyl halide with aqueous NaOH or NaHCOa under phase-transfer conditions, or with sodium bicarbonate with ultrasound. [Pg.490]

Thus the product in such cases can exist as two pairs of enantiomers. In a di-astereoselective process, one of the two pairs is formed exclusively or predominantly as a racemic mixture. Many such examples have been reported. In many of these cases, both the enolate and substrate can exist as (Z) or (E) isomers. With enolates derived from ketones or carboxylic esters, (E) enolates gave the syn pair of enantiomers (p. 146), while (Z) enolates gave the anti pair. Addition of chiral additives to the reaction, such as proline derivatives, or (—)-sparteine lead to product formation with good-to-excellent asynunetric induction. Ultrasound has also been used to promote asymmetric Michael reactions. Intramolecular versions of Michael addition are well known. ... [Pg.1023]

An interesting way to retard catalyst deactivation is to expose the reaction mixture to ultrasound. Ultrasound treatment of the mixture creates local hot spots, which lead to the formation of cavitation bubbles. These cavitation bubbles bombard the solid, dirty surface leading to the removal of carbonaceous deposits [38]. The ultrasound source can be inside the reactor vessel (ultrasound stick) or ultrasound generators can be placed in contact with the wall of the reactor. Both designs work in practice, and the catalyst lifetime can be essentially prolonged, leading to process intensification. The effects of ultrasound are discussed in detail in a review article [39]. [Pg.169]

Figure 2 schematically presents a synthetic strategy for the preparation of the structured catalyst with ME-derived palladium nanoparticles. After the particles formation in a reverse ME [23], the hydrocarbon is evaporated and methanol is added to dissolve a surfactant and flocculate nanoparticles, which are subsequently isolated by centrifugation. Flocculated nanoparticles are redispersed in water by ultrasound giving macroscopically homogeneous solution. This can be used for the incipient wetness impregnation of the support. By varying a water-to-surfactant ratio in the initial ME, catalysts with size-controlled monodispersed nanoparticles may be obtained. [Pg.294]

Abstract Acoustic cavitation is the formation and collapse of bubbles in liquid irradiated by intense ultrasound. The speed of the bubble collapse sometimes reaches the sound velocity in the liquid. Accordingly, the bubble collapse becomes a quasi-adiabatic process. The temperature and pressure inside a bubble increase to thousands of Kelvin and thousands of bars, respectively. As a result, water vapor and oxygen, if present, are dissociated inside a bubble and oxidants such as OH, O, and H2O2 are produced, which is called sonochemical reactions. The pulsation of active bubbles is intrinsically nonlinear. In the present review, fundamentals of acoustic cavitation, sonochemistry, and acoustic fields in sonochemical reactors have been discussed. [Pg.1]

Riesz P, Kondo T (1992) Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med 13 247-270... [Pg.25]

In a biphasic solid-liquid medium irradiated by power ultrasound, major mechanical effects are the reduction of particles size leading to an increased surface area and the formation of liquid jets at solid surfaces by the asymmetrical inrush of the fluid into the collapsing voids. These liquid jets not only provide surface cleaning but also induce pitting and surface activation effects and increase the rate of phase mixing, mass transfer and catalyst activation. [Pg.58]

Ultrasonic irradiation of a liquid leads to the generation of cavitation phenomenon which comprised of unique reaction fields in addition to physical and mechanical effects the formation of micro-meter sized bubbles, formation of bubbles with high temperature and high pressure conditions, formation of shock waves, and strong micro-stirring effects are produced. Table 5.1 shows representative ultrasound techniques to synthesize inorganic and metal nanoparticles and nanostructured materials. [Pg.132]

Based on these results, the reduction of Au(III) requires the formation of hot cavitation bubbles which cause pyrolysis of water and 1-propanol molecules. In addition, it is suggested that the number of hot cavitation bubbles and/or the bubble temperatures increase with increasing ultrasound intensity in the irradiation system. [Pg.138]

Yeung SA, Hobson R, Biggs S, Grieser F (1993) Formation of gold sols using ultrasound. J Chem Soc Chem Commun 378-379... [Pg.166]


See other pages where Ultrasound formation is mentioned: [Pg.11]    [Pg.216]    [Pg.148]    [Pg.257]    [Pg.263]    [Pg.265]    [Pg.462]    [Pg.148]    [Pg.74]    [Pg.1059]    [Pg.507]    [Pg.3]    [Pg.172]    [Pg.240]    [Pg.309]    [Pg.51]    [Pg.116]    [Pg.117]    [Pg.119]    [Pg.122]    [Pg.122]    [Pg.152]    [Pg.152]    [Pg.153]    [Pg.156]    [Pg.157]    [Pg.159]    [Pg.174]    [Pg.175]    [Pg.177]    [Pg.178]    [Pg.181]    [Pg.192]    [Pg.194]    [Pg.195]   


SEARCH



Types of devices for ultrasound-assisted slurry formation

Ultrasound catalysed formation

Ultrasound imaging image formation

Ultrasound radicals formation

Ultrasound-Assisted Slurry Formation

Ultrasound-assisted electrospray formation

Ultrasound-assisted formation of a solid phase sonocrystallization and sonoprecipitation

Ultrasound-assisted slurry formation versus other sample preparation methods

© 2024 chempedia.info