Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High-energy intermediate

Homogeneous Sonochemistry Bond Breaking and Radical Formation. The chemical effect of ultrasound on aqueous solutions have been studied for many years. The primary products are H2O2 there is strong evidence for various high-energy intermediates, including HO2,... [Pg.262]

There is another useiiil way of depicting the ideas embodied in the variable transition state theory of elimination reactions. This is to construct a three-dimensional potential energy diagram. Suppose that we consider the case of an ethyl halide. The two stepwise reaction paths both require the formation of high-energy intermediates. The El mechanism requires formation of a carbocation whereas the Elcb mechanism proceeds via a caibanion intermediate. [Pg.381]

The mechanism of succinyl-CoA synthetase is postulated to involve displacement of CoA by phosphate, forming succinyl phosphate at the active site, followed by transfer of the phosphoryl group to an active-site histidine (making a phosphohistidine intermediate) and release of succinate. The phosphoryl moiety is then transferred to GDP to form GTP (Figure 20.13). This sequence of steps preserves the energy of the thioester bond of succinyl-CoA in a series of high-energy intermediates that lead to a molecule of ATP ... [Pg.653]

Many models were proposed to account for the coupling of electron transport and ATP synthesis. A persuasive model, advanced by E. C. Slater in 1953, proposed that energy derived from electron transport was stored in a high-energy intermediate (symbolized as X P). This chemical species—in essence an activated form of phosphate—functioned according to certain relations according to Equations (21.22)-(21.25) (see below) to drive ATP synthesis. [Pg.693]

According to the Hammond postulate (Section 6.10), any factor that stabilizes a high-energy intermediate also stabilizes the transition state leading to that inlermediate. Since the rate-limiting step in an S l reaction is the spontaneous, unimolecLilar dissociation of the substrate to yield a carbocation, the reaction is favored whenever a stabilized carbocation intermediate is formed. The more stable the carbocation intermediate, the faster the S l reaction. [Pg.376]

Figure 10-3. Transfer of free energy from an exer-gonic to an endergonic reaction via a high-energy intermediate compound ( (E)). Figure 10-3. Transfer of free energy from an exer-gonic to an endergonic reaction via a high-energy intermediate compound ( (E)).
Figure 9.1. Energy profile for (a) a thermal reaction showing a high-energy intermediate, and (b) a photochemical reaction showing a conical intersection. Figure 9.1. Energy profile for (a) a thermal reaction showing a high-energy intermediate, and (b) a photochemical reaction showing a conical intersection.
Peroxyoxalate-based CL reactions are related to the hydrogen peroxide oxidation of an aryl oxalate ester, producing a high-energy intermediate. This intermediate (l,2-dioxetane-3,4-dione) forms, in the presence of a fluorophore, a charge transfer complex that dissociates to yield an excited-state fluorophore, which then emits. This type of CL reaction can be used to determine hydrogen peroxide or fluorophores including polycyclic aromatic hydrocarbons, dansyl- or fluores-camine-labeled analytes, or, indirectly, nonfluorescers that are easily oxidized (e.g., sulfite, nitrite) and quench the emission. The most widely used oxalate... [Pg.435]

The plasma membrane Ca2+-ATPase pump effects outward transport of Ca2+ against a large electrochemical gradient for Ca2+. The mechanism of the pump involves its phosphorylation by ATP and the formation of a high-energy intermediate. This basic mechanism is similar for both the plasma membrane and ER pumps however, the structures of these distinct gene products are substantially different. As discussed below, the ER pump, sometimes called a sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump, is inhibited potently by certain natural and synthetic toxins that do not affect the plasma membrane pump. The plasma membrane pump, but not the SERCA pump, is controlled in part by Ca2+ calmodulin, allowing for rapid activation when cytoplasmic Ca2+ rises. [Pg.381]

Successful systems have used colloidal platinum as an efficient catalyst for the multi-electron reduction process by which hydrogen is produced. The platinum acts as a charge pool in that electrons from one-electron processes are trapped, to be later delivered to the substrate in a concerted manner, thus avoiding formation of high-energy intermediates (Figure 12.12). [Pg.232]

By the mid-1950s, therefore, it had become clear that oxidation in the tricarboxylic acid cycle yielded ATP. The steps had also been identified in the electron transport chain where this apparently took place. Most biochemists expected oxidative phosphorylation would occur analogously to substrate level phosphorylation, a view that was tenaciously and acrimoniously defended. Most hypotheses entailed the formation of some high-energy intermediate X Y which, in the presence of ADP and P( would release X and Y and yield ATP. A formulation of the chemical coupling hypothesis was introduced by Slater in 1953,... [Pg.94]

Recentiy published crystal structures of antibody 4C6, an antibody that catalyzes another cationic cyclization reaction (Figure 6), revealed that this antibody has exquisite shape complementarity to its eliciting hapten 5. The active site contains multiple aromatic residues which shield the high-energy intermediate from solvent and stabilize the carbocation intermediates through cation-7r interactions. [Pg.327]

For most amino acids, the ester linkage between the ct-COOH group of the amino acid and the 3 -terminal adenosine of a cognate tRNA is formed in a two-step mechanism catalyzed by an aminoacyl-tRNA synthetase (aaRS). ° In this so-called direct pathway, the aaRS first catalyzes the reaction of the amino acid with adenosine triphosphate (ATP), yielding the enzyme-bound high-energy intermediate aa AMP and PPi in the second step, this aaRS-bound intermediate reacts with tRNA to yield aa-tRNA and AMP (Figure 1). [Pg.385]

Bisphosphoglycerate and phosphoenolpyruvate (PEP) are high-energy intermediates used to generate ATP by substrate-level phosphorylation. [Pg.167]


See other pages where High-energy intermediate is mentioned: [Pg.429]    [Pg.381]    [Pg.237]    [Pg.652]    [Pg.693]    [Pg.693]    [Pg.191]    [Pg.289]    [Pg.82]    [Pg.92]    [Pg.309]    [Pg.5]    [Pg.27]    [Pg.285]    [Pg.253]    [Pg.127]    [Pg.118]    [Pg.273]    [Pg.148]    [Pg.396]    [Pg.128]    [Pg.295]    [Pg.182]    [Pg.169]    [Pg.256]    [Pg.270]    [Pg.94]    [Pg.95]    [Pg.57]    [Pg.60]    [Pg.62]    [Pg.326]    [Pg.326]    [Pg.335]    [Pg.166]    [Pg.166]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



High-energy

© 2024 chempedia.info