Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosinases, copper

Mutant tyrosinase Copper content (mole/mol subunit)... [Pg.246]

Kojic acid (5-hydroxy-4 pyran 4-1-2 methyl) is a fungal derivative which inactivates tyrosinase via chelation of copper. Concentrations range from 2 to 4%. It can be used for monotherapy or in combination with retinoids or other cosme-ceutical products such as glycolic acid. Compared with hydroquinone, these kojic acid formulations usually show less efficacy. However, they may be effective in patients who do not... [Pg.169]

The pathway of melanin synthesis starts from the amino acid tyrosine (Fig. 1). The first two reactions are catalyzed by the copper-containing enzyme tyrosinase (EC 1.14.18.1). Tyrosine is hydroxylated to 3,4-dihy-... [Pg.158]

Copper(II) complexes with phenoxo ligands have attracted great interest, in order to develop basic coordination chemistry for their possible use as models for tyrosinase activity (dimeric complexes) and fungal enzyme galactose oxidase (GO) (monomeric complexes). The latter enzyme catalyzes the two-electron oxidation of primary alcohols with dioxygen to yield aldehyde and... [Pg.800]

Encapsulated Cu—chlorophthalocyanines oxidize hexane at C-l using 02 and at C-2 using H202 as oxidants. The dimeric structure of copper acetate is intact when it is incorporated into the zeolite. This is a regioselective aromatic hydroxylation catalyst, which mimics the specificity of the monooxygenase enzyme tyrosinase.82,89 Zeolite NaY catalysts made with a tetranuclear Cu(II) complex were synthesized and characterized.90... [Pg.253]

Cross-linking of chitin Copper tyrosinase (animals)... [Pg.353]

Many multiple copper containing proteins (e.g., laccase, ascorbate oxidase, hemo-cyanin, tyrosinase) contain so-called type III copper centers, which is a historical name (cf. Section 5.8 for type I and type II copper) for strongly exchange-coupled Cu(II) dimers. In sharp contrast to the ease with which 5=1 spectra from copper acetate are obtained, half a century of EPR studies on biological type III copper has not produced a single triplet spectrum. Why all type III centers have thus far remained EPR silent is not understood. [Pg.192]

Adults require 1-2 mg of copper per day, and eliminate excess copper in bile and feces. Most plasma copper is present in ceruloplasmin. In Wilson s disease, the diminished availability of ceruloplasmin interferes with the function of enzymes that rely on ceruloplasmin as a copper donor (e.g. cytochrome oxidase, tyrosinase and superoxide dismutase). In addition, loss of copper-binding capacity in the serum leads to copper deposition in liver, brain and other organs, resulting in tissue damage. The mechanisms of toxicity are not fully understood, but may involve the formation of hydroxyl radicals via the Fenton reaction, which, in turn initiates a cascade of cellular cytotoxic events, including mitochondrial dysfunction, lipid peroxidation, disruption of calcium ion homeostasis, and cell death. [Pg.774]

Copper is part of several essential enzymes including tyrosinase (melanin production), dopamine beta-hydroxylase (catecholamine production), copper-zinc superoxide dismutase (free radical detoxification), and cytochrome oxidase and ceruloplasmin (iron conversion) (Aaseth and Norseth 1986). All terrestrial animals contain copper as a constituent of cytochrome c oxidase, monophenol oxidase, plasma monoamine oxidase, and copper protein complexes (Schroeder et al. 1966). Excess copper causes a variety of toxic effects, including altered permeability of cellular membranes. The primary target for free cupric ions in the cellular membranes are thiol groups that reduce cupric (Cu+2) to cuprous (Cu+1) upon simultaneous oxidation to disulfides in the membrane. Cuprous ions are reoxidized to Cu+2 in the presence of molecular oxygen molecular oxygen is thereby converted to the toxic superoxide radical O2, which induces lipoperoxidation (Aaseth and Norseth 1986). [Pg.133]

Copper oxygenases Tyrosinase Fungal, Tyrosine oxidation... [Pg.190]

This discussion of copper-containing enzymes has focused on structure and function information for Type I blue copper proteins azurin and plastocyanin, Type III hemocyanin, and Type II superoxide dismutase s structure and mechanism of activity. Information on spectral properties for some metalloproteins and their model compounds has been included in Tables 5.2, 5.3, and 5.7. One model system for Type I copper proteins39 and one for Type II centers40 have been discussed. Many others can be found in the literature. A more complete discussion, including mechanistic detail, about hemocyanin and tyrosinase model systems has been included. Models for the blue copper oxidases laccase and ascorbate oxidases have not been discussed. Students are referred to the references listed in the reference section for discussion of some other model systems. Many more are to be found in literature searches.50... [Pg.228]

Polyphenol oxidase occurs within certain mammalian tissues as well as both lower (46,47) and higher (48-55) plants. In mammalian systems, the enzyme as tyrosinase (56) plays a significant role in melanin synthesis. The PPO complex of higher plants consists of a cresolase, a cate-cholase and a laccase. These copper metalloproteins catalyze the one and two electron oxidations of phenols to quinones at the expense of 02. Polyphenol oxidase also occurs in certain fungi where it is involved in the metabolism of certain tree-synthesized phenolic compounds that have been implicated in disease resistance, wound healing, and anti-nutrative modification of plant proteins to discourage herbivory (53,55). This protocol presents the Triton X-114-mediated solubilization of Vida faba chloroplast polyphenol oxidase as performed by Hutcheson and Buchanan (57). [Pg.186]

The reaction of binuclear copper complexes with oxygen as models for tyrosinase activity was also markedly accelerated by applying pressure (106408 ). Tyrosinase is a dinuclear copper protein which catalyses the hydroxylation of phenols. This reaction was first successfully modeled by Karlin and co-workers (109), who found that an intramolecular hydroxylation occurred when the binuclear Cu(I) complex of XYL-H was treated with oxygen (Scheme 5). [Pg.26]

There has been enormous activity in the field of copper(I)-dioxygen chemistry in the last 25 years, with our information coming from both biochemical-biophysical studies and to a very important extent from coordination chemistry. This has resulted in the structural and spectroscopic characterization of a large number of copper dioxygen complexes, some of which are represented in Figure 14.2. The complex F, first characterized in a synthetic system was subsequently established to be present in oxy-haemocyanin, and is found in derivatives of tyrosinase and catechol oxidase, implying its involvement in aromatic hydroxylations in both enzymes and chemical systems. [Pg.244]

Since the oxidative polymerization of phenols is the industrial process used to produce poly(phenyleneoxide)s (Scheme 4), the application of polymer catalysts may well be of interest. Furthermore, enzymic, oxidative polymerization of phenols is an important pathway in biosynthesis. For example, black pigment of animal kingdom "melanin" is the polymeric product of 2,6-dihydroxyindole which is the oxidative product of tyrosine, catalyzed by copper enzyme "tyrosinase". In plants "lignin" is the natural polymer of phenols, such as coniferyl alcohol 2 and sinapyl alcohol 3. Tyrosinase contains four Cu ions in cataly-tically active site which are considered to act cooperatively. These Cu ions are presumed to be surrounded by the non-polar apoprotein, and their reactivities in substitution and redox reactions are controlled by the environmental protein. [Pg.148]

Copper is a component of many enzymes including amine oxidase, lysyl oxidase, ferroxidase, cytochrome oxidase, dopamine P-hydroxylase, superoxide dismutase and tyrosinase. This latter enzyme is present in melanocytes and is important in formation of melanin controlling the colour of skin, hair and eyes. Deficiency of tyrosinase in skin leads to albinism. Cu " ion plays an important role in collagen formation. [Pg.346]


See other pages where Tyrosinases, copper is mentioned: [Pg.5515]    [Pg.5514]    [Pg.30]    [Pg.5515]    [Pg.5514]    [Pg.30]    [Pg.385]    [Pg.368]    [Pg.190]    [Pg.81]    [Pg.160]    [Pg.761]    [Pg.766]    [Pg.778]    [Pg.781]    [Pg.801]    [Pg.803]    [Pg.808]    [Pg.826]    [Pg.95]    [Pg.324]    [Pg.60]    [Pg.135]    [Pg.187]    [Pg.214]    [Pg.217]    [Pg.217]    [Pg.218]    [Pg.220]    [Pg.227]    [Pg.301]    [Pg.9]    [Pg.247]   
See also in sourсe #XX -- [ Pg.322 , Pg.443 ]




SEARCH



Copper Tyrosinase

Copper dioxygen complexes tyrosinase activity

Copper-containing enzyme tyrosinase

Tyrosinase copper complexes

Tyrosinase copper content

Tyrosinase copper sites

Tyrosinases

Tyrosinases, copper mammalian

© 2024 chempedia.info