Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport simple diffusion

Passive transport The passive transport of molecules across a membrane does not require an input of metabolic energy. The rate of transport (diffusion) is proportional to the concentration gradient of the molecule across the membrane. There are two types of passive transport simple diffusion and facilitated diffusion. [Pg.132]

The turnover time of water vapor in the atmosphere obviously is a function of latitude and altitude. In the equatorial regions, its turnover time in the atmosphere is a few days, while water in the stratosphere has a turnover time of one year or more. Table 7-1 Qunge, 1963) provides an estimate of the average residence time for water vapor for various latitude ranges in the troposphere. Given this simple picture of vertical structure, motion, transport, and diffusion, we can proceed to examine the behavior of... [Pg.141]

Molecules can passively traverse the bilayer down electrochemical gradients by simple diffusion ot by facilitated diffusion. This spontaneous movement toward equilibrium contrasts with active transport, which requires energy because it constitutes movement against an electrochemical gradient. Figure 41-8 provides a schematic representation of these mechanisms. [Pg.423]

The entry rate of glucose into red blood cells is far greater than would be calculated for simple diffusion. Rather, it is an example of facilitated diffiision (Chapter 41). The specific protein involved in this process is called the glucose transporter or glucose permease. Some of its properties are summarized in Table 52-3-The process of entry of glucose into red blood cells is of major importance because it is the major fuel supply for these cells. About seven different but related glucose transporters have been isolated from various tissues unlike the red cell transporter, some of these are insidin-dependent (eg, in muscle and adipose tissue). There is considerable interest in the latter types of transporter because defects in their recruitment from intracellular sites to the surface of skeletal muscle cells may help explain the insulin resistance displayed by patients with type 2 diabetes mellitus. [Pg.611]

Simple Diffusion Phase-Boundary Controlled Material Transport... [Pg.154]

Under certain conditions, the transfer of various molecules across the membrane is relatively easy. The membrane must contain a suitable transport mediator , and the process is then termed facilitated membrane transport . Transport mediators permit the transported hydrophilic substance to overcome the hydrophobic regions in the membrane. For example, the transport of glucose into the red blood cells has an activation energy of only 16 kJ mol-1—close to simple diffusion. [Pg.455]

When the temperature of the solution is increased, then the current as well as the sodium transport rate increase far more than would correspond to simple diffusion or migration. When substances inhibiting metabolic processes are added to the solution, e.g. cyanide or the glycoside, ouabain,... [Pg.461]

Reference to Table 1 indicates that the iron compounds which are unique to animals are those involved in the transport of oxygen and iron. This is a consequence of the higher level of differentiation in the animal organism, a development which precludes simple diffusion as a means of supplying the cell with essential nutrilites. [Pg.166]

LBPs are likely to have conventional roles in the energy metabolism and transport of lipids in nematodes for membrane construction, etc. Many parasitic helminths have deficiencies in the synthesis of some lipids and so their lipid acquisition, transport and storage mechanisms clearly need to be specialized and therefore pertinent to the host-parasite relationship (Barrett, 1981). From a practical point of view, lipid transporter proteins may also be important in the delivery of anthelmintic drugs to their target most anthelmintics are hydrophobic and if they do not distribute to their site of action within the parasites by simple diffusion across and along membranes, then the parasite s own carrier proteins may be involved. [Pg.318]

Various methods, such as influence sampling, can be used to reduce the number of calculations needed. See also Lapeyre, B., Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford University Press (2003), and Liu, J. S., Monte Carlo Strategies in Scientific Computing, Springer (2001). Some computer programs are available that perform simple Monte Carlo calculations using Microsoft Excel. [Pg.54]

Another important vitamin is folate, which is required for purine and pyrimidine nucleotide synthesis. Since folate and its derivatives are generally lipo-phobic anions, they do not traverse biological membranes via simple diffusion but rather have to be taken up into the cells by specific transport processes... [Pg.263]

The cellular mechanism of action of hydrocortisone, a glucocorticoid, is also related to proteins but not by the enhancement of cAMP production. Hydrocortisone is transported by simple diffusion across the membrane of the cell into the cytoplasm and binds to a specific receptor The steroid-receptor complex is activated and enters the nucleus, where it regulates transcription of specific gene sequences into ribonucleic acid (RNA). Eventually, messenger RNA (mRNA) is translated to form specific proteins in the cytoplasm that are involved in the steroid-induced cellular response. [Pg.260]

Because of its catalytic nature, a single antibody-enzyme conjugate would activate many molecules of the prodrug in question. Much of the active cytocidal agent released at the tumour surface would be taken up by the tumour cells via simple diffusion or carrier-mediated active transport. [Pg.387]

Many experimental variations are possible when performing uptake studies [246]. In a simple experiment for which the cells are initially free of internalised compound, the initial rates of transmembrane transport may be determined as a function of the bulk solution concentrations. In such an experiment, hydrophilic compounds, such as sugars, amino acids, nucleotides, organic bases and trace metals including Cd, Cu, Fe, Mn, and Zn [260-262] have been observed to follow a saturable uptake kinetics that is consistent with a transport process mediated by the formation and translocation of a membrane imbedded complex (cf. Pb uptake, Figure 6 Mn uptake, Figure 7a). Saturable kinetics is in contrast to what would be expected for a simple diffusion-mediated process (Section 6.1.1). Note, however, that although such observations are consistent... [Pg.487]

This refers to the transport across the epithelial cells, which can occur by passive diffusion, carrier-mediated transport, and/or endocytic processes (e.g., transcytosis). Traditionally, the transcellular route of nasal mucosa has been simply viewed as primarily crossing the lipoidal barrier, in which the absorption of a drug is determined by the magnitude of its partition coefficient and molecular size. However, several investigators have reported the lack of linear correlation between penetrant lipophilicity and permeability [9], which implies that cell membranes of nasal epithelium cannot be regarded as a simple lipoidal barrier. Recently, compounds whose transport could not be fully explained by passive simple diffusion have been investigated to test if they could be utilized as specific substrates for various transporters which have been identified in the... [Pg.221]

The fate of a drag in vivo is dictated by a variety of physiochemical properties, including size, lipophilicity, and charge. These properties determine how a drag is absorbed into the blood, distributed throughout the body, metabolized, and eventually eliminated. While movement of a drug molecule can occur through simple diffusion, there are many transporter proteins expressed on cell membranes to assist... [Pg.41]

The resorption process is facilitated by the large inner surface of the intestine, with its brush-border cells. Lipophilic molecules penetrate the plasma membrane of the mucosal cells by simple diffusion, whereas polar molecules require transporters (facilitated diffusion see p. 218). In many cases, carrier-mediated cotransport with Na"" ions can be observed. In this case, the difference in the concentration of the sodium ions (high in the intestinal lumen and low in the mucosal cells) drives the import of nutrients against a concentration gradient (secondary active transport see p. 220). Failure of carrier systems in the gastrointestinal tract can result in diseases. [Pg.272]

Carrier-mediated passage of a molecular entity across a membrane (or other barrier). Facilitated transport follows saturation kinetics ie, the rate of transport at elevated concentrations of the transportable substrate reaches a maximum that reflects the concentration of carriers/transporters. In this respect, the kinetics resemble the Michaelis-Menten behavior of enzyme-catalyzed reactions. Facilitated diffusion systems are often stereo-specific, and they are subject to competitive inhibition. Facilitated transport systems are also distinguished from active transport systems which work against a concentration barrier and require a source of free energy. Simple diffusion often occurs in parallel to facilitated diffusion, and one must correct facilitated transport for the basal rate. This is usually evident when a plot of transport rate versus substrate concentration reaches a limiting nonzero rate at saturating substrate While the term passive transport has been used synonymously with facilitated transport, others have suggested that this term may be confused with or mistaken for simple diffusion. See Membrane Transport Kinetics... [Pg.278]

BASIC TRANSPORTER KINETICS. In the kinetic identification and characterization of a transport system [including a demonstration of the ion dependency (e.g, Na+-dependency) or lack of dependency], it is essential to demonstrate that saturation of the transport of a particular substrate occurs. Simple diffusion of a substrate... [Pg.448]

There is evidence in literature that alkaloid biology is connected with regulation, stimulation and induction functions. Tsai et al. proved that caffeine levels in the blood, brain and bile of rats decreased when given a treatment of rutaecarpine, an alkaloid from Evodia rutaecarpa (Figure 78). It is known that caffeine has been found to enter the brain by both simple diffusion and saturable carrier-mediated transport . The hepatobiliary excretion of caffeine has also been reported in humans rabbits and rats. ... [Pg.144]

Any volatile material, irrespective of its route of administration, has the potential for pulmonary excretion. Certainly, gases and other volatile substances that enter the body primarily through the respiratory tract can be expected to be excreted by this route. No specialized transport systems are involved in the loss of substances in expired air simple diffusion across cell membranes is predominant. The rate of loss of gases is not constant it depends on the rate of respiration and pulmonary blood flow. [Pg.44]

The mathematical difficulty increases from homogeneous reactions, to mass transfer, and to heterogeneous reactions. To quantify the kinetics of homogeneous reactions, ordinary differential equations must be solved. To quantify diffusion, the diffusion equation (a partial differential equation) must be solved. To quantify mass transport including both convection and diffusion, the combined equation of flow and diffusion (a more complicated partial differential equation than the simple diffusion equation) must be solved. To understand kinetics of heterogeneous reactions, the equations for mass or heat transfer must be solved under other constraints (such as interface equilibrium or reaction), often with very complicated boundary conditions because of many particles. [Pg.83]


See other pages where Transport simple diffusion is mentioned: [Pg.232]    [Pg.385]    [Pg.21]    [Pg.291]    [Pg.305]    [Pg.209]    [Pg.435]    [Pg.520]    [Pg.240]    [Pg.302]    [Pg.320]    [Pg.96]    [Pg.321]    [Pg.181]    [Pg.343]    [Pg.48]    [Pg.96]    [Pg.89]    [Pg.12]    [Pg.281]    [Pg.283]    [Pg.347]    [Pg.491]    [Pg.118]    [Pg.159]    [Pg.265]    [Pg.118]    [Pg.30]    [Pg.426]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Diffusion simple

Diffusion transporters

Transport diffusive

© 2024 chempedia.info