Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal oxides selective oxidation

This review focuses on the structural stability of transition metal oxides to lithium insertion/extraction rather than on their electrochemical performance. The reader should refer to cited publications to access relevant electrochemical data. Because of the vast number of papers on lithium metal oxides that have been published since the 1970s, only a selected list of references has been provided. [Pg.295]

Our study was focused on the influence of reducing power on the selective oxidation of H2S over the various transition metal oxides, which would be proceeded by the redox mechanism [5,6]. The redox mechanism and the reducing power [7] in selective oxidation of H2S can be defined as follows ... [Pg.425]

In 1990, Schroder and Schwarz reported that gas-phase FeO" " directly converts methane to methanol under thermal conditions [21]. The reaction is efficient, occuring at 20% of the collision rate, and is quite selective, producing methanol 40% of the time (FeOH+ + CH3 is the other major product). More recent experiments have shown that NiO and PtO also convert methane to methanol with good efficiency and selectivity [134]. Reactions of gas-phase transition metal oxides with methane thus provide a simple model system for the direct conversion of methane to methanol. These systems capture the essential chemistry, but do not have complicating contributions from solvent molecules, ligands, or multiple metal sites that are present in condensed-phase systems. [Pg.344]

The large amounts of natural gas (mainly methane) found worldwide have led to extentive research programs in the area of the direct conversion of methane [1-3]. Ihe oxidative transformation of methane (OTM) is an important route for the effective utilization of the abundant natural gas resources. How to increase catalyst activity is a common problem on the activation of methane. The oxidation of methane over transition m al oxides is always high active, but its main product is CO2, namely the product of deep oxidation. It is because transition metal oxides have high oxidative activity. So, they were usually used as the main corrqtonent of catalysts for the conqilete oxidation of alkane[4]. The strong oxidative activity of CH4 over tran on metal oxides such as NiO indicates that the activation of C-H bond over transition metal oxides is much easier than that over alkaline earth metal oxides and rare earth metal oxides. Furthermore, the activation of C-H bond is the key step of OTM reaction. It is the reason that we use transition metal oxides as the mam conq>onent of the OTM catalysts. However, we have to reahze that the selectivity of OTM over transition metal oxides is poor. [Pg.453]

Transition metal oxides represent a prominent class of partial oxidation catalysts [1-3]. Nevertheless, materials belonging to this class are also active in catalytic combustion. Total oxidation processes for environmental protection are mostly carried out industriaUy on the much more expensive noble metal-based catalysts [4]. Total oxidation is directly related to partial oxidation, athough opposes to it. Thus, investigations on the mechanism of catalytic combustion by transition metal oxides can be useful both to avoid it in partial oxidation and to develop new cheaper materials for catalytic combustion processes. However, although some aspects of the selective oxidation mechanisms appear to be rather established, like the involvement of lattice catalyst oxygen (nucleophilic oxygen) in Mars-van Krevelen type redox cycles [5], others are still uncompletely clarified. Even less is known on the mechanism of total oxidation over transition metal oxides [1-4,6]. [Pg.483]

We have summarized below recent results concerning spectroscopic / flow reactor investigations of hydrocarbons partial and total oxidation on different transition metal oxide catalysts. The aim of this study is to have more information on the mechanisms of the catalytic activity of transition metal oxides, to better establish selective and total oxidation ways at the catalyst surface, and to search for partial oxidation products from light alkane conversion. [Pg.483]

Attempts to achieve selective oxidations of hydrocarbons or other compounds when the desired site of attack is remote from an activating functional group are faced with several difficulties. With powerful transition-metal oxidants, the initial oxidation products are almost always more susceptible to oxidation than the starting material. When a hydrocarbon is oxidized, it is likely to be oxidized to a carboxylic acid, with chain cleavage by successive oxidation of alcohol and carbonyl intermediates. There are a few circumstances under which oxidations of hydrocarbons can be synthetically useful processes. One group involves catalytic industrial processes. Much effort has been expended on the development of selective catalytic oxidation processes and several have economic importance. We focus on several reactions that are used on a laboratory scale. [Pg.1148]

Transition metal oxides (in absence of water) are therefore essential catalysts for many chemical processes such as oxidation (e.g., oxidation of CO in emission control), dehydrogenation (e.g., production of aldehydes from alcohol), and selective reduction (e.g., reduction of NO). Usually, activation of an oxide by heating is a pre-... [Pg.38]

Table I. Reduction Potentials of Selected Transition Metal Oxide/... Table I. Reduction Potentials of Selected Transition Metal Oxide/...
Selective partial oxidation of hydrocarbons poses considerable challenges to contemporary research. While by no means all, most catalytic oxidations are based on transition-metal oxides as active intermediates, and the oxidative dehydrogenation of ethylbenzene to styrene over potassium-promoted iron oxides at a scale of about 20 Mt/year may serve as an example [1]. Despite this... [Pg.10]

On the other hand, the origin of the promoter metal and metal oxide effects is not always clear, despite the many detailed characterization studies. In what follows, we will give first a possible definition of the different promotion phenomena described in literature, as well as their mode of operation. The second part deals with an extensive literature overview of the effect of each promoter element on the F-T activity, selectivity and stability of the active Co phase. The different modes of operation will be evaluated for each element. Special attention will be paid to noble metal and transition metal oxide promotion effects. [Pg.20]

Water-gas shift reaction. The water-gas shift (WGS) reaction (reaction (2)) made by particles composed of a promoter element close to a supported cobalt particle leads to a change in the local CO/H2 ratio, which may affect the surface coverage of cobalt. As a result, both the activity and the selectivity of the catalyst can be altered. Some transition metal oxides are known to act as WGS reagents. [Pg.25]

Early in the nineties Ruiz et al. reported enhanced catalyst activities and increased selectivities to alkenes and higher hydrocarbons upon addition of V, Mg, and Ce oxides to Co-based F-T catalysts.These variations were attributed to electronic effects induced by the transition metal oxide. Similar results were obtained by Bessel et al. using a Cr promoter in Co/ZSM-5 catalysts.This group observed that the addition of Cr improved the catalyst activity, and shifted the selectivity from methane to higher, generally more olefinic, hydrocarbons. Based on H2 and CO chemisorption, as well as TPR and TPD results, they suggested that the promotion was caused by an interaction between the transition metal oxide and the cobalt oxide, which inhibits... [Pg.30]

Rhodium is a unique metal since it can catalyze several transformations.222,223 It is an active methanation catalyst and yields saturated hydrocarbons on an inert support. Methanol is the main product in the presence of rhodium on Mg(OH)2. Transition-metal oxides as supports or promoters shift the selectivity toward the formation of C2 and higher oxygenates. [Pg.102]

More recently phosphorus-containing zeolites developed by Union Carbide (alu-minophosphates, silicoaluminophosphates) were shown to be equally effective in methanol condensation.439-444 ZSM-5 was also shown to exhibit high activity and selectivity in the transformation of Fischer-Tropsch oxygenates to ethylene and propylene in high yields.445 Silicalite impregnated with transition-metal oxides, in turn, is selective in the production of C4 hydrocarbons (15-50% isobutane and 8-15% isobutylene).446... [Pg.119]

Soft metallic elements such as Al, In, Pb, Hg, Sn, Zn, Tl, Ga, Cd, V and Nb are type I superconductors. Alloys and chemical compounds such as Nb3Sn, V3Ga, and lZa3In, and some transition elements, are type II superconductors. Type II substances generally have a higher Tc than do type I superconductors. The recently discovered transition metal oxide superconductors have generated intense interest because they are type II superconductors with very high transition temperatures. Table 13.1 summarizes Tc for selected superconductors. [Pg.98]


See other pages where Transition metal oxides selective oxidation is mentioned: [Pg.2398]    [Pg.385]    [Pg.186]    [Pg.194]    [Pg.425]    [Pg.427]    [Pg.1067]    [Pg.1116]    [Pg.115]    [Pg.55]    [Pg.369]    [Pg.256]    [Pg.265]    [Pg.140]    [Pg.751]    [Pg.141]    [Pg.24]    [Pg.27]    [Pg.30]    [Pg.31]    [Pg.31]    [Pg.524]    [Pg.83]    [Pg.126]    [Pg.107]    [Pg.242]    [Pg.255]    [Pg.385]    [Pg.68]    [Pg.180]    [Pg.182]    [Pg.183]    [Pg.167]    [Pg.248]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Metalation selectivity

Selective metallization

Transition metal oxide

Transition metal oxide oxides

Transition metals oxidation

Transition oxides

© 2024 chempedia.info