Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tools overview

In one volume, all the essential tools Overview of the topic, chronology of important events, glossary of terms, biographical listing, complete index,... [Pg.317]

Ishikawa Fishbone Diagram. Available at http //asq.org/learn-about-quality/ cause-analysis-tools/overview/fishbone.html. [Pg.328]

ASQ. Failure Mode Effects Analysis. http //asq.org/learn-about-quality/process-analysis-tools/overview/fmea.html, 2014 Quality Associate International. History of FMEA. http //quality-one.com, 2014 see also Fadlovich, Erik. Performing Failure Mode and Effect Analysis (Embedded Technology), 2007. [Pg.204]

This overview will first deal with the optical aspects of conventional microscopes and the various means to improve contrast. Confocal microscopy, which in the last decade has become an important tool, especially for biology, is discussed in the final section. [Pg.1655]

The drawing software comprises a comprehensive collection of standard tools to sketch 2D chemical structures. To specify all its facilities and tools would go far beyond the scope of this overview, but there are some nice features that are very useful for chemists so they are mentioned here briefly. One of these enables the prediction of H and NMR shifts from structures and the correlation of atoms with NMR peaks (Figure 2-127). lUPAC standard names can be generated... [Pg.139]

The explorative analysis of data sets by visual data mining applications takes place in a three-step process During the first step (overview), the user can obtain an overview of the data and maybe can identify some basic relationships between specific data points. In the second step (filtering), dynamic and interactive navigation, selection, and query tools will be used to reorganize and filter the data set. Each interaction by the user will lead to an immediate update of the data scene and will reveal the hidden patterns and relationships. Finally, the patterns or data points can be analyzed in detail with specific detail tools. [Pg.476]

This Introductory Section was intended to provide the reader with an overview of the structure of quantum mechanics and to illustrate its application to several exactly solvable model problems. The model problems analyzed play especially important roles in chemistry because they form the basis upon which more sophisticated descriptions of the electronic structure and rotational-vibrational motions of molecules are built. The variational method and perturbation theory constitute the tools needed to make use of solutions of... [Pg.73]

The textbook s organization can be divided into four parts. Chapters 1-3 serve as an introduction, providing an overview of analytical chemistry (Chapter 1) a review of the basic tools of analytical chemistry, including significant figures, units, and stoichiometry (Chapter 2) and an introduction to the terminology used by analytical chemists (Chapter 3). Familiarity with the material in these chapters is assumed throughout the remainder of the text. [Pg.814]

Tools and techniques in product development 5.3.1 Overview of tools and techniques... [Pg.262]

The World Wide Web has transformed the way in which we obtain and analyze published information on proteins. What only a few years ago would take days or weeks and require the use of expensive computer workstations can now be achieved in a few minutes or hours using personal computers, both PCs and Macintosh, connected to the internet. The Web contains hundreds of sites of Interest to molecular biologists, many of which are listed in Pedro s BioMolecular Research Tools (http // www.fmi.ch/biology/research tools.html). Many sites provide free access to databases that make it very easy to obtain information on structurally related proteins, the amino acid sequences of homologous proteins, relevant literature references, medical information and metabolic pathways. This development has opened up new opportunities for even non-specialists to view and manipulate a structure of interest or to carry out amino-acid sequence comparisons, and one can now rapidly obtain an overview of a particular area of molecular biology. We shall here describe some Web sites that are of interest from a structural point of view. Updated links to these sites can be found in the Introduction to Protein Structure Web site (http // WWW.ProteinStructure.com/). [Pg.393]

By the time the next overview of electrical properties of polymers was published (Blythe 1979), besides a detailed treatment of dielectric properties it included a chapter on conduction, both ionic and electronic. To take ionic conduction first, ion-exchange membranes as separation tools for electrolytes go back a long way historically, to the beginning of the twentieth century a polymeric membrane semipermeable to ions was first used in 1950 for the desalination of water (Jusa and McRae 1950). This kind of membrane is surveyed in detail by Strathmann (1994). Much more recently, highly developed polymeric membranes began to be used as electrolytes for experimental rechargeable batteries and, with particular success, for fuel cells. This important use is further discussed in Chapter 11. [Pg.333]

As has been discussed in Chapter One, mathematical programming (or optimization) is a powerful tool for process integration. For an overview of c mization and its application in pollution prevention, the reader is referred to El-Halwagi (1995). In this chapter, it will be shown how optimization techniques enable the designer to ... [Pg.126]

Complementing these very well established approaches for the study of any scientific field, namely experiments and analytical theory, very recently, computer simulations have become a powerful tool for the study of a great variety of processes occurring in nature in general [4-6], as well as surface chemical reactions in particular [7]. Within this context, the aim of this chapter is not only to offer a critical overview of recent progress in the area of computer simulations of surface reaction processes, but also to provide an outlook of promising trends in most of the treated topics. [Pg.388]

When the underlying distribution is not known, tools such as histograms, probability curves, piecewise polynomial approximations, and general techniques are available to fit distributions to data. It may be necessary to assume an appropriate distribution in order to obtain the relevant parameters. Any assumptions made should be supported by manufacturer s data or data from the literature on similar items working in similar environments. Experience indicates that some probability distributions are more appropriate in certain situations than others. What follows is a brief overview on their applications in different environments. A more rigorous discussion of the statistics involved is provided in the CPQRA Guidelines. ... [Pg.230]

This section provides a general overview of the properties of lake systems and presents tlie basic tools needed for modeling of lake water quality. The priiiciptil physical features of a lake are length, depth (i.e., water level), area (both of the water surface and of tire drainage area), and volume. The relationship betw een the flow of a lake or reserv oir and the volume is also an important characteristic. The ratio of the volume to the (volumetric) flow represents tlie hydraulic retention time (i.e., the time it would take to empty out the lake or reservoir if all inputs of water to the lake ceased). This retention time is given by the ratio of the water body volume and tire volumetric flow rate. [Pg.361]

For overviews of applications of the Heck reaction in natural products synthesis, see (a) Link, J. T. Overman, L. E. In Metal-Catalyzed Cross-Coupling Reactions, Diederich, F., Stang, P. J., Eds. Wiley-VCH New York, 1998 Chapter 6. (b) Brase, S. de Meijere, A. In Metal-Catalyzed Cross-Coupling Reactions Diederich, F., Stang, P. J., Eds. Wiley New York, 1998 Chapter 3.6. (c) Nicolaou, K. C. Sorensen, E. J. Classics in Total Synthesis VCH New York, 1996 Chapter 31. These authors refer to the Heck reaction as "one of the true "power tools" of contemporary organic synthesis" (p. 566). [Pg.37]

As it was mentioned in Section 9.4.1, 3D structures generated by DG have to be optimized. For this purpose, MD is a well-suited tool. In addition, MD structure calculations can also be performed if no coarse structural model exists. In both cases, pairwise atom distances obtained from NMR measurements are directly used in the MD computations in order to restrain the degrees of motional freedom of defined atoms (rMD Section 9.4.2.4). To make sure that a calculated molecular conformation is rehable, the time-averaged 3D structure must be stable in a free MD run (fMD Sechon 9.4.2.5J where the distance restraints are removed and the molecule is surrounded by expMcit solvent which was also used in the NMR measurement Before both procedures are described in detail the general preparation of an MD run (Section 9.4.2.1), simulations in vacuo (Section 9.4.2.2) and the handling of distance restraints in a MD calculation (Section 9.4.2.3) are treated. Finally, a short overview of the SA technique as a special M D method is given in Sechon 9.4.2.6. [Pg.239]

In this chapter we have only addressed a selected number of topics and for lack of space we have left out many others. Cluster analysis has played a larger role in QSAR than appears from our overview. This technique is an established QSAR tool in recognition or classification of known patterns [38,60] as well as for cognition or detection of novel patterns [61]. [Pg.416]

In addition to looking for data trends in physical property space using PCA and PLS, trends in chemical structure space can be delineated by viewing nonlinear maps (NLM) of two-dimensional structure descriptors such as Unity Fingerprints or topological atom pairs using tools such as Benchware DataMiner [42]. Two-dimensional NLM plots provide an overview of chemical structure space and biological activity/molecular properties are mapped in a 3rd and/or 4th dimension to look for trends in the dataset. [Pg.189]


See other pages where Tools overview is mentioned: [Pg.267]    [Pg.425]    [Pg.434]    [Pg.535]    [Pg.74]    [Pg.267]    [Pg.425]    [Pg.434]    [Pg.535]    [Pg.74]    [Pg.533]    [Pg.162]    [Pg.263]    [Pg.275]    [Pg.295]    [Pg.395]    [Pg.25]    [Pg.1]    [Pg.944]    [Pg.153]    [Pg.336]    [Pg.217]    [Pg.181]    [Pg.287]    [Pg.163]    [Pg.23]    [Pg.237]    [Pg.42]    [Pg.1342]    [Pg.1]    [Pg.173]    [Pg.37]   


SEARCH



© 2024 chempedia.info