Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tocopherol-like

Benzoxathiins, considered as 4-thiaflavans, have shown antimicrobial <2004MI317> and antioxidant activity and seem to operate by both the flavonoid-like and the tocopherol-like mechanisms <2001CC551, 20050BC3066>. [Pg.896]

Experiments performed by Corwin and Schwarz (1960) gave evidence that the a-tocopherol metabolite (X) (Fig. 7) exerts tocopherol-like activity in the respiratory decline test. In order to mal e some material available for further biological testing, the tritium-labeled y-lactone (X) was synthesized following the lines given by Weichet et al. (1959) ... [Pg.395]

Vitamin E was first described ia 1922 and the name was originally applied to a material found ia vegetable oils. This material was found to be essential for fertility ia tats. It was not until the early 1980s that symptoms of vitamin E deficiency ia humans were recognized. Early work on the natural distribution, isolation, and identification can be attributed to Evans, Butt, and Emerson (University of California) and MattiU and Olcott (University of Iowa). Subsequentiy a group of substances (Eig. 1), which fall iato either the family of tocopherols or tocotrienols, were found to act like vitamin E (1 4). The stmcture of a-tocopherol was determined by degradation studies ia 1938 (5). [Pg.144]

Vitamin E actually consists of a family of compounds, the most active of which is a-tocopherol. The mechanism of the vitamin s action is not completely certain, but it seems likely that it might undergo hydrogen atom transfer reactions with free radicals to give a stable radical (see also Chapter 17, Problem 7). [Pg.221]

Nowadays, consumers would like those antioxidants present in food products not only to stabilise food lipids, but also to be absorbed through the intestinal wall and protect the lipids of blood plasma against oxidation. This effect is relatively evident in the case of tocopherols (which are liposoluble) or ascorbic acid (which is hydrophilic), but much less evidence is available on antioxidants of medium polarity, such as flavonoids, rosemary oleoresins or green or black tea catechins. [Pg.311]

Among the plant phenols, the flavonoids and the anthocyanidins, belonging to the 1,3-diphenylpropans, have been studied in most detail, mainly because of their potential health benefits. With more than 4,000 different flavonoids known, systematic studies of the effects of variation in molecular structure on physico-chemical properties of importance for antioxidative effects have also been possible (Jovanovic et al, 1994 Seeram and Nair, 2002). Flavonoids were originally found not to behave as efficiently as the classic phenolic antioxidants like a-tocopherol and synthetic phenolic antioxidants in donating... [Pg.320]

The reaction of eq. 16.9 will regenerate the antioxidant Arj-OH at the expense of the antioxidant At2-OH. Despite the fact that such regeneration reactions are not simple electron transfer reactions, the rate of reactions like that of eq. 16.9 has been correlated with the E values for the respective Ar-0. Thermodynamic and kinetic effects have not been clearly separated for such hierarchies, but for a number of flavonoids the following pecking order was established in dimethyl formamid (DMF) by a combination of electrolysis for generating the a-tocopherol and the flavonoid phenoxyl radicals and electron spin resonance (ESR) spectroscopy for detection of these radicals (Jorgensen et al, 1999) ... [Pg.324]

There has been some evidence of a higher antioxidant effect when both flavonoids and a-tocopherol are present in systems like LDL, low-density lipoproteins (Jia et al., 1998 Zhu et al, 1999). LDL will incorporate a-tocopherol, while flavonoids will be present on the outside in the aqueous surroundings. A similar distribution is to be expected for oil-in-water emulsion type foods. In the aqueous environment, the rate of the inhibition reaction for the flavonoid is low due to hydrogen bonding and the flavonoid will not behave as a chain-breaking antioxidant. Likewise, in beer, none of the polyphenols present in barley showed any protective effect on radical processes involved in beer staling, which is an oxidative process (Andersen et al, 2000). The polyphenols have, however, been found to act synergistically... [Pg.325]

In the water-like solvent tert-butyl alcohol, a-tocopherol was found to prevent lipid oxidation, showing a distinct lag-phase for oxygen consumption. This was in contrast to quercetin or epicatechin, which were only weak retarders of lipid oxidation without any clear antioxidative effect. Quercetin or epicatechin, when combined with a-tocopherol, increased the lag-phase for oxygen consumption as seen for a-tocopherol alone. The stoichiometric factor for a-tocopherol, a-TOH, as chain-breaking antioxidant has the value n = 2 according to the well-established mechanism ... [Pg.326]

Flavonoids are chain-breaking antioxidants in lipid-like solvents like chlorobenzene, although the k(inh) is smaller than for a-tocopherol and the lag-phase accordingly less evident. For peroxidating lipids in chlorobenzene the clear lag-phase for a-tocopherol became longer when quercetin or catechin were present. The effect appears to be additive and a regeneration of a-tocopherol by quercetin or catechin in this lipid-like solvent should rather be termed a co-antioxidative effect (Pedrielli and Skibsted, 2002). [Pg.326]

The solubility of antioxidants determines their phase distribution in foods. It has been observed that compared to lipid-soluble antioxidants water-soluble antioxidants like ascorbate yield better protection to strongly lipophilic food systems like pure oils. In contrast, antioxidants soluble in lipids like the tocopherols yield better protection to oil-in-water emulsions when compared to water-soluble antioxidants (Porter, 1993). The explanation offered for this... [Pg.326]

The lag-phase measurement at 234 nm of the development of conjugated dienes on copper-stimulated LDL oxidation is used to define the oxidation resistance of different LDL samples (Esterbauer et al., 1992). During the lag phase, the antioxidants in LDL (vitamin E, carotenoids, ubiquinol-10) are consumed in a distinct sequence with a-tocopherol as the first followed by 7-tocopherol, thereafter the carotenoids cryptoxanthin, lycopene and finally /3-carotene. a-Tocopherol is the most prominent antioxidant of LDL (6.4 1.8 mol/mol LDL), whereas the concentration of the others 7-tocopherol, /3-carotene, lycopene, cryptoxanthin, zea-xanthin, lutein and phytofluene is only 1/10 to 1/300 of a-tocopherol. Since the tocopherols reside in the outer layer of the LDL molecule, protecting the monolayer of phospholipids and the carotenoids are in the inner core protecting the cholesterylesters, and the progression of oxidation is likely to occur from the aqueous interface inwards, it seems reasonable to assign to a-tocopherol the rank of the front-line antioxidant. In vivo, the LDL will also interact with the plasma water-soluble antioxidants in the circulation, not in the artery wall, as mentioned above. [Pg.47]

Fluorimetric methods of analysis make use of the natural fluorescence of the analyte, the formation of a fluorescent derivative or the quenching of the fluorescence of a suitable compound by the analyte. Fluorescence cannot occur unless there is light absorption, so that all fluorescent molecules absorb, but the reverse is not true only a small fraction of all absorbing compounds exhibits fluorescence. The types of molecule most likely to show useful fluorescence are those with delocalised ji-orbital systems. Often, the more rigid the molecule the stronger the fluorescence intensity. Naturally fluorescent compounds include Vitamin A, E (tocopherol). [Pg.321]

The mechanism of prooxidant effect of a-tocopherol in aqueous lipid dispersions such as LDLs has been studied [22], This so-called tocopherol-mediated peroxidation is considered in detail in Chapter 25, however, in this chapter we should like to return once more to the question of possible prooxidant activity of vitamin E. The antioxidant effect of a-tocopherol on lipid peroxidation including LDL oxidation is well established in both in vitro and in vivo systems (see, for example, Refs. [3,4] and many other references throughout this book). However, Ingold et al. [22] suggested that despite its undoubted high antioxidant efficiency in homogenous solution a-tocopherol can become a chain transfer agent in aqueous LDL... [Pg.850]

Cyanobacteria and algae have evolved a complex defense system against ROS, including non-enzymatic antioxidants like carotenoids, tocopherols (vitamin E), ascorbic acid (vitamin C) and reduced glutathione (Asada 1994). [Pg.282]

Literature data on cytotoxic effects of photoexcited fullerene C60 are controversial. In the studies on transformed B-lymphocytes of Raji fine, phototoxic action of water-soluble carboxy-C60 was not revealed even upon its concentration of 5 x 10 5 M (Irie et al., 1996). In the study (Kamat et al., 2000) damaging effect of fullerenes C60 in dependence on intensity of irradiation toward CHO cells has been demonstrated. Using microsomal fraction of rat liver that was treated with C -cyclodextrin complex, it was shown that already in 5-30 min after UV-irradiation the accumulation of LPO products occurs that is suppressed by antioxidants like ascorbic acid and a-tocopherol. Similar effect of fullerenes C60 has been revealed in microsomal fraction of the cells of ascitic sarcoma 180 (Kamat et al., 2000). [Pg.131]

Antioxidants are compounds that inhibit autoxidation reactions by rapidly reacting with radical intermediates to form less-reactive radicals that are unable to continue the chain reaction. The chain reaction is effectively stopped, since the damaging radical becomes bound to the antioxidant. Thus, vitamin E (a-tocopherol) is used commercially to retard rancidity in fatty materials in food manufacturing. Its antioxidant effect is likely to arise by reaction with peroxyl radicals. These remove a hydrogen atom from the phenol group, generating a resonance-stabilized radical that does not propagate the radical reaction. Instead, it mops up further peroxyl radicals. In due course, the tocopheryl peroxide is hydrolysed to a-tocopherylquinone. [Pg.336]

Lipids are important components of the diet fatty acids are the higher energetic source as they ensure 9kcal/g. Furthermore, some peculiar fatty acids themselves and several components of the unsaponifiable fraction are biologically active molecules, as they can act as vitamins (tocopherols— vitamin E), provitamins (carotenes—vitamin A, cholecalcipherol—vitamin D), vitamin-like (essential fatty acids), and hormones or hormone precursors (sterols—steroidal hormones). [Pg.563]


See other pages where Tocopherol-like is mentioned: [Pg.259]    [Pg.275]    [Pg.56]    [Pg.300]    [Pg.259]    [Pg.275]    [Pg.56]    [Pg.300]    [Pg.44]    [Pg.491]    [Pg.162]    [Pg.1295]    [Pg.486]    [Pg.320]    [Pg.35]    [Pg.317]    [Pg.321]    [Pg.63]    [Pg.238]    [Pg.243]    [Pg.270]    [Pg.179]    [Pg.183]    [Pg.211]    [Pg.452]    [Pg.384]    [Pg.384]    [Pg.457]    [Pg.4]    [Pg.780]    [Pg.3]    [Pg.309]    [Pg.387]    [Pg.16]   
See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.65 , Pg.66 ]




SEARCH



Tocopherol-like antioxidants

© 2024 chempedia.info