Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecule biologically active

There are three general types of radiopharmaceuticals elemental radionucHdes or simple compounds, radionucHde complexes, and radiolabeled biologically active molecules. Among the first type are radionucHdes in their elemental form such as Kr and Xe or Xe, and simple aqueous radionucHde solutions such as or I-iodide, Tl-thaUous chloride, Rb-mbidium(I) chloride [14391-63-0] Sr-strontium(II) chloride, and Tc-pertechnetate. These radiopharmaceuticals are either used as obtained from the manufacturer in a unit dose, ie, one dose for one patient, or dispensed at the hospital from a stock solution that is obtained as needed from a chromatographic generator provided by the manufacturer. [Pg.477]

An important consideration for all radiopharmaceuticals and especially radiolabeled biologically active molecules is specific activity. There are two types of specific activity radionucHdic and biological. RadionucHdic specific activity refers to the ratio of the number of atoms of a particular radioisotope to the total number of atoms of the element. For Tc, the radionuchdic specific activity is the number of Tc atoms to the total number of Tc and Tc atoms. Because all isotopes of an element ate chemically identical, a low specific activity may lead to a low yield in the synthesis of a radiopharmaceutical if a significant proportion of the reagents is consumed by the undesited isotopes. [Pg.481]

Pharmaceuticals and Agrochemicals. Thioglycohc acid and its esters are useful as a raw material to obtain biologically active molecules. In cephalosporine syntheses, (4-pyridyl)thioacetic acid [10351 -19-8] (65) and trifluoromethane (ethyl) thioglycolate [75-92-9] (66) are used as intermediates. Methyl-3-ainino-2-thiophene carboxylate can be used as intermediate for herbicidal sulfonylureas (67) and various thiophenic stmctures (68). [Pg.7]

The main reaction of this type has been the reductive cyclization of nitropyridine derivatives carrying an o-amino ester or o-aminocarbonyl substituent. These cyclize in situ via the o-diamino derivative to give pyridopyrazines of known constitution, either for establishment of structure of products obtained in the ambiguous Isay synthesis (see Section 2.15.15.6.1), or in the synthesis of aza analogues of biologically active molecules. [Pg.254]

The isosteric relationship of benzene and thiophene has often led medicinal chemists to substitute the sulfur containing heterocycle for benzene drugs in biologically active molecules. That this relationship has some foundation in fact is attested by the observation that the resulting analogs often possess full biologic activity. Alkylation of the diamine, 71 (obtained from aniline and the chloroethylamine), with 2-chloromethylthiophene affords the antihistamine methaphenylene (72) The correspond-... [Pg.52]

Selectivity, the difference in activity a given biologically active molecule has for two or more processes. Thus, if a molecule has a 10-fold (for example) greater affinity for process A over process B, then it can be said to have selectivity for process A. However, the implication is that the different activity is not absolute, that is, given enough molecule, the activation of the other process(es) will occur. [Pg.282]

Samsonov GV (1986) Ion Exchange and Preparative Chromatography of Biologically Active Molecules. Plenum Press corp consult Bureau, New York... [Pg.46]

The imidazole nucleus is often found in biologically active molecules,3 and a large variety of methods have been employed for their synthesis.4 We recently needed to develop a more viable process for the preparation of kilogram quantities of 2,4-disubstituted imidazoles. The condensation of amidines, which are readily accessible from nitriles,5 with a-halo ketones has become a widely used method for the synthesis of 2,4-disubstituted imidazoles. A literature survey indicated that chloroform was the most commonly used solvent for this reaction.6 In addition to the use of a toxic solvent, yields of the reaction varied from poor to moderate, and column chromatography was often required for product isolation. Use of other solvents such as alcohols,7 DMF,8 and acetonitrile9 have also been utilized in this reaction, but yields are also frequently been reported as poor. [Pg.55]

Li and co-workers introduced a rapid and efficient microwave-assisted method to prepare new disubstituted 1,3,4-thiazoles from 1,4-disubtituted thiosemicarbazides with the objective to obtain biologically active molecules. The intermediate l-aryloxyacetyl-4-(4-methoxybenzoyl)thiosemicarbazide was irradiated in an excess of glacial acetic acid in a domestic microwave oven and led to the formation of 2-(methoxybenzoyl-5-aryloxymethyl)-l,3,4-dithiazoles in good yields [30] (Scheme 20). [Pg.72]

Boyd DB, Marsh MM. Computational chemistry in the design of biologically active molecules at Lilly. Abstracts of 183rd National Meeting of the American Chemical Society, Las Vegas, Nevada, March 28-April 2,1982. [Pg.46]

Specific structural fragments of biologically active molecules can be used as the core elements for generating targeted libraries. The most straightfor-... [Pg.355]

The Staudinger reaction [92], a [2 + 2]-cycloaddition of a ketene and a nucleophilic imine, usually proceeds by an initial imine attack on the ketene thus forming a zwitterionic enolate which subsequently cyclizes. This reaction is an expedient route to p-lactams, the core of numerous antibiotics (e.g., penicillins) and other biologically active molecules [93]. In contrast, for Lewis-base catalyzed asymmetric reactions, nonnucleophilic imines are required (to suppress a noncatalyzed background reaction), bearing, for example, an N-Ts [94] or -Boc-substituent [95]. [Pg.166]

Abstract A -Heterocyclic carbene complexes produced on industrial scale are presented in this chapter along with a discussion about their production. Details of processes employing NHC complexes on pilot to industrial scales are discussed. These are frequently oriented towards the synthesis of biologically active molecules, however, examples are given for rubber formation and for 1-octene synthesis, a comonomer for polyethylene synthesis. [Pg.315]


See other pages where Molecule biologically active is mentioned: [Pg.702]    [Pg.709]    [Pg.106]    [Pg.362]    [Pg.257]    [Pg.480]    [Pg.480]    [Pg.480]    [Pg.480]    [Pg.480]    [Pg.481]    [Pg.481]    [Pg.494]    [Pg.248]    [Pg.351]    [Pg.220]    [Pg.2]    [Pg.40]    [Pg.1049]    [Pg.152]    [Pg.153]    [Pg.190]    [Pg.191]    [Pg.296]    [Pg.335]    [Pg.916]    [Pg.266]    [Pg.214]    [Pg.357]    [Pg.380]    [Pg.381]    [Pg.382]    [Pg.387]    [Pg.113]    [Pg.239]    [Pg.40]    [Pg.156]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Activated molecules

Biologic molecules

Molecules biological

© 2024 chempedia.info