Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tissues, Adenine

Samples of DNA isolated from different tissues of the same species have the same proportions of heterocyclic bases, but samples from different species often have greatly different proportions of bases. Human DNA, for example, contains about 30% each of adenine and thymine and about 20% each of guanine and cytosine. The bacterium Clostridium perfringens, however, contains about 37% each of adenine and thymine and only 13% each of guanine and cytosine. Note that in both examples the bases occur in pairs. Adenine and thymine are present in equal amounts, as are cytosine and guanine. Why ... [Pg.1103]

Although the 3 - and 5 -polyphosphate derivatives mentioned above exhibit exquisite inhibitory potency these compounds are not cell permeable. To take advantage ofthepotency of such derivatives for studies with intact cells and tissues, there are two possibilities. One is chemically to protect the phosphate groups from exonucleotidases that also allows the compound to transit the membrane intact. The other is to provide a precursor molecule that is cell permeable and is then metabolized into an inhibitor by intracellular enzymes. The general term for such a compound is prodrug nucleotide precursors are also referred to as pronucleotides. Families of protected monophosphate derivatives were synthesized, based on (3-L- and 3-D-2, 5 -dd-3 -AMP, 3-L-2, 3 -dd-5 -AMP, and the acyclic 9-substituted adenines, PMEA and PMPA. Protective substituents were (i) -( -pivaloyl-2-thioethyl) ... [Pg.36]

Adenylate kinase (AK) is a ubiquitous monomeric enzyme that catalyzes the interconversion of AMP, ADP, and ATP. This interconversion of the adenine nucleotides seems to be of particular importance in regulating the equilibrium of adenine nucleotides in tissues, especially in red blood cells. AK has three isozymes (AK 1,2, and 3). AK 1 is present in the cytosol of skeletal muscle, brain, and red blood cells, and AK 2 is found in the intermembrane space of mitochondria of liver, kidney, spleen, and heart. AK 3, also called GTP AMP phosphotransferase, exists in the mitochondrial matrix of liver and heart. [Pg.13]

Alkoxyalkanoate esters have been used as prodrugs to improve the oral bioavailability of antiviral agents such as (+)-cyclaradine (carbocyclic arabino-furanosyl adenine) [41]. (+)-Cyclaradine has been shown to be effective against herpes simplex virus in tissue culture at noncytotoxic concentrations. Two prodrugs of (+)-cyclaradine, namely, (+)-cyclaradine-5 -methoxyacetate (CM) and (+)-cyclaradine-5,-ethoxypropionate (CE) (Fig. 2), may be promising candidates... [Pg.206]

Adenosine is not a classical neurotransmitter because it is not stored in neuronal synaptic granules or released in quanta. It is generally thought of as a neuromodulator that gains access to the extracellular space in part from the breakdown of extracellular adenine nucleotides and in part by translocation from the cytoplasm of cells by nucleoside transport proteins, particularly in stressed or ischemic tissues (Fig. 17-2C). Extracellular adenosine is rapidly removed in part by reuptake into cells and conversion to AMP by adenosine kinase and in part by degradation to inosine by adenosine deaminases. Adenosine deaminase is mainly cytosolic but it also occurs as a cell surface ectoenzyme. [Pg.305]

Disulfoton causes neurological effects in humans and animals. The mechanism of action on the nervous system depends on the metabolism of disulfoton to active metabolites. The liver is the major site of metabolic oxidation of disulfoton to disulfoton sulfoxide, disulfoton sulfone, demeton S-sulfoxide and demeton S-sulfone, which inhibit acetylcholinesterase in nervous tissue. These four active metabolites are more potent inhibitors of acetylcholinesterase than disulfoton. Cytochrome P-450 monooxygenase and flavin adenine dinucleotide monooxygenase are involved in this metabolic activation. The active metabolites ultimately undergo nonenzymatic and/or enzymatic hydrolysis to more polar metabolites that are not toxic and are excreted in the urine. [Pg.90]

In the second stage, the building blocks are degraded by various pathways in tissues to a common metabolic intermediate, acetyl CoA. Most of the energy contained in metabolic fuels is conserved in the chemical bonds (electrons) of acetyl CoA. A smaller portion is conserved in reducing nicotinamide adenine dinucleotide (NAD) to NADH or flavin adenine dinucleotide (FAD) to FADH. Reduction indicates the addition of electrons that may be free, part of a hydrogen atom (H), or a hydride ion (H ). [Pg.153]

The transport of amino acids at the BBB differs depending on their chemical class and the dual function of some amino acids as nutrients and neurotransmitters. Essential large neutral amino acids are shuttled into the brain by facilitated transport via the large neutral amino acid transporter (LAT) system [29] and display rapid equilibration between plasma and brain concentrations on a minute time scale. The LAT-system at the BBB shows a much lower Km for its substrates compared to the analogous L-system of peripheral tissues and its mRNA is highly expressed in brain endothelial cells (100-fold abundance compared to other tissues). Cationic amino acids are taken up into the brain by a different facilitative transporter, designated as the y system, which is present on the luminal and abluminal endothelial membrane. In contrast, active Na -dependent transporters for small neutral amino acids (A-system ASC-system) and cationic amino acids (B° system), appear to be confined to the abluminal surface and may be involved in removal of amino acids from brain extracellular fluid [30]. Carrier-mediated BBB transport includes monocarboxylic acids (pyruvate), amines (choline), nucleosides (adenosine), purine bases (adenine), panthotenate, thiamine, and thyroid hormones (T3), with a representative substrate given in parentheses [31]. [Pg.30]

Conversion of 4-aminopyrazolo [3,4-d] pyrimidine (VIII) to its ribonucleotide by mouse tumours and host tissues has been observed [118,119]. Although no evidence of the anabolism of A -methyladenine (111) [120] to the ribonucleotide was obtained in mice with Ehrlich ascites carcinoma [121, 122], it is anabolized by bacteria [123. 124] and the enzyme responsible was partially purified from Salmonella typhimurium [125]. Human epidermoid carcinoma No. 2 cells resistant to 2-fluoroadenine (H.Ep.-2/FA) have lost adenine phosphoribosyl-... [Pg.75]

NAD glycohydrolases from rat liver nuclei, 66, 151 poly(ADP-ribose) synthetase from rat liver nuclei, 66, 154 poly(ADP-ribose) synthetase from calf thymus, 66, 159 extraction and quantitative determination of larger than tetrameric endogenous polyadenosine diphosphoribose from animal tissues, 66, 165 covalent modification of proteins by metabolites of NAD, 66, 168 coenzyme activity of NAD bound to polymer supports through the adenine moiety, 66, 176 use of differently immobilized nucleotides for binding NAD -dependent dehydrogenases, 66, 192. [Pg.503]

Cholesterol is transported into the mitochondria of steroidogenic tissue, where side chain cleavage is carried out. In common with other mixed-function oxidase systems, the cholesterol side chain cleavage requires reduced nicotinamide-adenine dinucleotide phosphate... [Pg.687]

Amine oxidases catalyze the oxidative deamination of both xenobiotic and biogenic amines, and thus have many critical biological functions. Two distinct classes differ in the nature of their prosthetic groups [1]. The flavin-(FAD flavin adenine dinucleotide)-dependent amine oxidases include monoamine oxidases (MAO A and B) and polyamine oxidases. Amine oxidases not containing FAD, the so-called semicarbazide-sensitive amine oxidases (SSAO), include both plasma amine oxidases and tissue amine oxidases. These contain quinonoid structures as redox cofactors that are derived from posttranslationally modified tyrosine or tryptophan side chains, topaoquinone frequently playing this role [2]. [Pg.662]


See other pages where Tissues, Adenine is mentioned: [Pg.35]    [Pg.35]    [Pg.36]    [Pg.296]    [Pg.126]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.296]    [Pg.126]    [Pg.467]    [Pg.121]    [Pg.291]    [Pg.77]    [Pg.100]    [Pg.265]    [Pg.347]    [Pg.80]    [Pg.107]    [Pg.317]    [Pg.279]    [Pg.306]    [Pg.306]    [Pg.544]    [Pg.708]    [Pg.1163]    [Pg.347]    [Pg.30]    [Pg.344]    [Pg.348]    [Pg.156]    [Pg.227]    [Pg.55]    [Pg.70]    [Pg.153]    [Pg.596]    [Pg.44]    [Pg.218]    [Pg.246]    [Pg.84]    [Pg.474]    [Pg.96]    [Pg.176]   
See also in sourсe #XX -- [ Pg.194 ]




SEARCH



Adenine incorporation into tissue nucleic acids

© 2024 chempedia.info