Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastics polyvinyl chloride, polyethylene

There is every indication that the next several years will witness a continued rapid increase in the use of petroleum raw materials in the production of elastomers and plastics, and that the petroleum companies will become increasingly active, not only in providing the starting materials, but also in operating the chemical processes of converting them to the required monomers and polymers. The current increase in production of thermoplastic resins such as polystyrene, polyvinyl chloride, polyethylene, and acrylonitrile polymers is based on the development of widespread new applications at the consumer level, and the outlet for plastic materials in many of these uses is presently limited by the capacity to produce and process the resins rather than by consumer demand. [Pg.323]

Figure 4-3. Comparison of ten-second modulus vs. temperature curves for three common thermoplastics polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE). Figure 4-3. Comparison of ten-second modulus vs. temperature curves for three common thermoplastics polyvinyl chloride (PVC), polystyrene (PS) and polyethylene (PE).
Thermoplastics, those that be resoftened on heating, including nylon, polyvinyl chloride, polyethylene, polystyrene (9003-53-6), polypropylene, polyurethane, etc. [Pg.190]

In order to put the global polyethylene market as of 2010 into perspective, it is helpful to compare the demand of the five most common thermoplastic materials. These are polyethylene, crystalline polypropylene, polyvinyl chloride, polyethylene terephthalate and polystyrene. [Pg.13]

The important thermoplastics used commercially are polyethylene, acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), cellulose acetate butyrate (CAB), vinylidene chloride (Saran), fluorocarbons (Teflon, Halar, Kel-F, Kynar), polycarbonates, polypropylene, nylons, and acetals (Delrin). Important thermosetting plasttcs are... [Pg.2457]

Examples of thermoplastics are polyethylene, polyvinyl chloride, polystyrene, nylon, cellulose acetate, acetal, polycarbonate, polymethyl methacrylate and polypropylene. [Pg.4]

In terms of tonnage the bulk of plastics produced are thermoplastics, a group which includes polyethylene, polyvinyl chloride (p.v.c.), the nylons, polycarbonates and cellulose acetate. There is however a second class of materials, the thermosetting plastics. They are supplied by the manufacturer either as long-chain molecules, similar to a typical thermoplastic molecule or as rather small branched molecules. They are shaped and then subjected to either heat or chemical reaction, or both, in such a way that the molecules link one with another to form a cross-linked network (Fig. 18.6). As the molecules are now interconnected they can no longer slide extensively one past the other and the material has set, cured or cross linked. Plastics materials behaving in this way are spoken of as thermosetting plastics, a term which is now used to include those materials which can in fact cross link with suitable catalysts at room temperature. [Pg.916]

The ductility of GRT-polyethylene blends drastically decreases at ground rubber concentration in excess of 5%. The inclusion of hnely ground nitrile rubber from waste printing rollers into polyvinyl chloride (PVC) caused an increase in the impact properties of the thermoplastic matrix [76]. Addition of rubber powder that is physically modihed by ultrasonic treatment leads to PP-waste ethylene-propylene-diene monomer (EPDM) powder blends with improved morphology and mechanical properties [77]. [Pg.1050]

Thermoplastic materials, which soften with increasing temperature for example, polyvinyl chloride (PVC) and polyethylene. [Pg.301]

In this chapter, the big four thermoplastics are covered polyethylene, polypropylene, polyvinyl chloride, and polystyrene. Like most other thermoplastics, they are long-chain polymers that become soft when heated and can be molded under pressure. They are linear- or branch-chained and, except for some exotic copolymers, have little or no cross-linking. Technological advances continue. Research in copolymerization, catalysts, processing, blending, and fabricating continues even as you read this. [Pg.335]

Thermoplastic Polymers. Most thermoplastic polymers are used in high-volume, widely recognized applications, so they are often referred to as commodity plastics. (We will elaborate upon the distinction between a polymer and a plastic in Chapter 7, but for now we simply note that a plastic is a polymer that contains other additives and is usually identified by a variety of commercial trade names. There are numerous databases, both in books [1] and on the Internet [2], that can be used to identify the primary polymer components of most plastics. With a few notable exceptions, we will refer to most polymers by their generic chemical name.) The most common commodity thermoplastics are polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). These thermoplastics all have in common the general repeat unit -(CHX-CH2)-, where -X is -H for PE, -CH3 for PP, -Cl for PVC, and a benzene ring for PS. When we discuss polymerization reactions in Chapter 3, we will see that all of these thermoplastics can be produced by the same type of reaction. [Pg.80]

THERMOPLASTIC. A high polymer that softens when exposed to heat and returns to its original condition when cooled to room temperature. Natural substances that exhibit this behavior are crude rubber and a number of waxes however, the term is usually applied to synthetics such as polyvinyl chloride, nylons, fluorocarbons, linear polyethylene, polyurethane prepolymer, polystyrene, polypropylene, and cellulosic and acrylic resins. See also Plastics. [Pg.1610]

PC PE PES PET PF PFA PI PMMA PP PPO PS PSO PTFE PTMT PU PVA PVAC PVC PVDC PVDF PVF TFE SAN SI TP TPX UF UHMWPE UPVC Polycarbonate Polyethylene Polyether sulfone Polyethylene terephthalate Phenol-formaldehyde Polyfluoro alkoxy Polyimide Polymethyl methacrylate Polypropylene Polyphenylene oxide Polystyrene Polysulfone Polytetrafluoroethylene Polytetramethylene terephthalate (thermoplastic polyester) Polyurethane Polyvinyl alcohol Polyvinyl acetate Polyvinyl chloride Polyvinyl idene chloride Polyvinylidene fluoride Polyvinyl fluoride Polytelrafluoroethylene Styrene-acrylonitrile Silicone Thermoplastic Elastomers Polymethylpentene Urea formaldehyde Ultrahigh-molecular-weight polyethylene Unplasticized polyvinyl chloride... [Pg.106]

In the Tirecycle process, first developed in 1982, finely ground scrap rubber is treated with a liquid polymer to form a reclaimed rubber product. RRE literature claims superior bonding properties and suggests use in tread rubber and other products including washers, mats, car parts, and tiedowns. The Tirecycle product is claimed to be useful with thermoplastics such as polypropylene, polyethylene, and polystyrene, as well as polyvinyl chloride, polyesters, and urethanes. [Pg.42]

Fig. 1. US total sales and captive use of selected thermoplastic resins by major market for 2001. Major market volumes are derived from plastic resins sales and captive use data as compiled by VERIS Consulting, LLC and reported by the American Plastics Council s Plastic Industry Producers Statistics Group. Selected thermoplastics are low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, nylon, polyvinyl chloride, thermoplastic polyester, engineering resins, acrylonitrile-butadiene-styrene, styrene-acrylonitrile, other styrenics, polystyrene, and styrene butadiene latexes. (Data from ref. 25.)... Fig. 1. US total sales and captive use of selected thermoplastic resins by major market for 2001. Major market volumes are derived from plastic resins sales and captive use data as compiled by VERIS Consulting, LLC and reported by the American Plastics Council s Plastic Industry Producers Statistics Group. Selected thermoplastics are low-density polyethylene, linear low-density polyethylene, high-density polyethylene, polypropylene, nylon, polyvinyl chloride, thermoplastic polyester, engineering resins, acrylonitrile-butadiene-styrene, styrene-acrylonitrile, other styrenics, polystyrene, and styrene butadiene latexes. (Data from ref. 25.)...
Very Low Density (VLDPE) and Ultra Low Density (ULDPE) Polyethylenes. These are made by copolymerization with increasing amounts of comonomers, especially 1 -octene, reducing regularity/crystallinity (density 0.91- 0.86) down toward ethylene/propylene rubber. These are soft and flexible enough to compete with plasticized polyvinyl chloride and thermoplastic elastomers in some applications. [Pg.643]

Plastic polymers make up a high proportion of waste and the volume and range used is increasing dramatically. The two main types of plastic are thermoplastics which soften when heated and harden again when cooled and thermosets which harden by curing and cannot be remoulded. The six main plastics in municipal solid waste are, high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC) and polyethylene terephthalate (PET). In addition there are... [Pg.287]

Plastic wastes may be the remains of production or post-consumer wastes, the latter being classified as municipal, packaging, agricultural, automotive and electrical. Packaging wastes are the major category [33, 52-54]. These are mainly thermoplastics such as polyethylene, polypropylene, polystyrene and polyvinyl chloride [28, 33, 55-56]. [Pg.617]

This is a huge general category of materials, which includes both thermoplastics and thermosetting polymers. Tabular data on the corrosion resistance of these materials in a wide range of environments are available from a variety of sources. Commonly used materials of construction in the CPI include polyvinyl chloride (PVC and CPVC), polyethylene, polypropylene, polystyrene, polycarbonate, polytetrafluoroethylene (PTFE), fiberglass composite materials, and a variety of epoxies used for coatings or adhesives. [Pg.793]

The matrix is considered to be the binder for the microspheres. Typical matrix materials include (a) thermosetting resins such as epoxy resins, unsaturated polyesters, vinyl esters, phenolics, polyurethanes, and silicones (b) thermoplastic resins such as polyethylene, polystyrene, polyvinyl chloride (c) asphalt and (d) gypsiun and cement. [Pg.148]

Thermoplastic Resins. Polyethylene, polypropylene, polyvinyl chloride, polystyrene and polyimide (9). [Pg.154]

All plastics emit toxic and irritant fumes with increasing temperatures. However, the evolution rate and composition of the fumes emitted vary for different plastics and are strongly temperature dependent. Some common examples include thermoplastics such as polyvinyl chloride (PVC), polyethylene (PE), polypropylene (PP), polystyrene (PS), ABS copolymer, and polytetrafluoroethylene (PTFE). When... [Pg.2102]

Over a period of many years polymeric materials have gradually replaced metals in many applications. Among the five leading thermoplastics low and high density polyethylene, polyvinyl chloride, polypropylene, and polystyrene polyethylene is the largest volume plastic in the world. Polyethylene was initially made in the United States in 1943. In 1997, the estimated combined worldwide production of both low and high-density polyethylene was 1.230 x 1010 kg (2.712 x 1010 lb) [10]. Low density polyethylene is produced at pressures of 1030 to 3450 bar (1020 to 3400 atm) whereas high density polyethylene is produced at pressures of 103 to 345 bar (102 to 340 atm) [11]. [Pg.4]

Additive used for thermoplastic applications requiring lubrication, slip and anti-blocking properties. Commonly used in polyethylene and polypropylene films, as a lubricant in polyvinyl chloride, mold release agent, dyestuff dispersant for printing inks and surface coatings, and a blending agent for polyamide resins. [Pg.308]


See other pages where Thermoplastics polyvinyl chloride, polyethylene is mentioned: [Pg.440]    [Pg.440]    [Pg.2100]    [Pg.1013]    [Pg.226]    [Pg.7]    [Pg.278]    [Pg.341]    [Pg.47]    [Pg.39]    [Pg.357]    [Pg.296]    [Pg.17]    [Pg.45]    [Pg.1316]    [Pg.304]    [Pg.168]    [Pg.298]    [Pg.211]    [Pg.16]    [Pg.1]    [Pg.1000]   


SEARCH



Polyethylene chloride

Polyvinyl chloride

Thermoplastics polyethylenes

Thermoplastics polyvinyl chloride

© 2024 chempedia.info