Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyethylene chloride

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

Dextrin Polyethylene glycol 400 Use 5 mL of 2% aqueous solution of chloride-free dextrin per 25 mL of 0. IM halide solution. Prepare a 50% (v/v) aqueous solution of the surfactant. Use 5 drops per 100 mL end-point volume. [Pg.1172]

Little is known of the market for acetyl chloride. The production and sales are beUeved to be small, but may have potential for very large scale-up. The total U.S. market may amount to only 500 t annually. Acetyl chloride must be shipped in polyethylene-lined dmms having capacities of only 220 L it must be labeled as a corrosive substance. Acetyl chloride generated captively from purchased raw materials probably has a unit value of no more than 0.92—0.95/kg. Shipping costs and other factors set the price at about 3/kg for the commercial trade. [Pg.82]

AUoys of ceUulose with up to 50% of synthetic polymers (polyethylene, poly(vinyl chloride), polystyrene, polytetrafluoroethylene) have also been made, but have never found commercial appUcations. In fact, any material that can survive the chemistry of the viscose process and can be obtained in particle sizes of less than 5 p.m can be aUoyed with viscose. [Pg.350]

Polystyrene. Polystyrene (PS) film and sheet has the third largest production volume, behind only the polyethylenes and poly(vinyl chloride). [Pg.378]

BiaxiaHy oriented films have excellent tensile strength properties and good tear and impact properties. They are especially well regarded for their brilliance and clarity. Essentially all poly(ethylene terephthalate) film is biaxiaHy oriented, and more than 80% of polypropylene film is biaxiaHy oriented. Polystyrene film is oriented, and a lesser amount of polyethylene, polyamide, poly(vinyl chloride), and other polymers are so processed. Some of the specialty films, like polyimides (qv), are also oriented. [Pg.381]

Titanium tetrafluoride may be prepared by the action of elemental fluorine on titanium metal at 250°C (5) or on Ti02 at 350°C. The most economical and convenient method is the action of Hquid anhydrous HF on commercially available titanium tetrachloride in Teflon or Kynar containers. Polyethylene reacts with TiCl and turns dark upon prolonged exposure. The excess of HF used is boiled off to remove residual chloride present in the intermediates. [Pg.255]

Physical Stabilization Process. Cellulai polystyrene [9003-53-6] the outstanding example poly(vinyl chloride) [9002-86-2] copolymers of styrene and acrylonitrile (SAN copolymers [9003-54-7]) and polyethylene [9002-88-4] can be manufactured by this process. [Pg.405]

Sintering has been used to produce a porous polytetrafluoroethylene (16). Cellulose sponges are the most familiar cellular polymers produced by the leaching process (123). Sodium sulfate crystals are dispersed in the viscose symp and subsequently leached out. Polyethylene (124) or poly(vinyl chloride) can also be produced in cellular form by the leaching process. The artificial leather-tike materials used for shoe uppers are rendered porous by extraction of salts (125) or by designing the polymers in such a way that they precipitate as a gel with many holes (126). [Pg.408]

Structural Components. In most appHcations stmctural foam parts are used as direct replacements for wood, metals, or soHd plastics and find wide acceptance in appHances, automobUes, furniture, materials-handling equipment, and in constmction. Use in the huil ding and constmction industry account for more than one-half of the total volume of stmctural foam appHcations. High impact polystyrene is the most widely used stmctural foam, foUowed by polypropylene, high density polyethylene, and poly(vinyl chloride). The constmction industry offers the greatest growth potential for ceUular plastics. [Pg.416]

The combination of stmctural strength and flotation has stimulated the design of pleasure boats using a foamed-in-place polyurethane between thin skins of high tensUe strength (231). Other ceUular polymers that have been used in considerable quantities for buoyancy appHcations are those produced from polyethylene, poly(vinyl chloride), and certain types of mbber. The susceptibUity of polystyrene foams to attack by certain petroleum products that are likely to come in contact with boats led to the development of foams from copolymers of styrene and acrylonitrUe which are resistant to these materials... [Pg.416]

Docusate Calcium. Dioctyl calcium sulfosuccinate [128-49-4] (calcium salt of l,4-bis(2-ethylhexyl)ester butanedioic acid) (11) is a white amorphous soHd having the characteristic odor of octyl alcohol. It is very slightly soluble in water, and very soluble in alcohol, polyethylene glycol 400, and com oil. It may be prepared directly from dioctyl sodium sulfo succinate dissolved in 2-propanol, by reaction with a methan olic solution of calcium chloride. [Pg.201]

Heat stabilizers protect polymers from the chemical degrading effects of heat or uv irradiation. These additives include a wide variety of chemical substances, ranging from purely organic chemicals to metallic soaps to complex organometaUic compounds. By far the most common polymer requiring the use of heat stabilizers is poly(vinyl chloride) (PVC). However, copolymers of PVC, chlorinated poly(vinyl chloride) (CPVC), poly(vinyhdene chloride) (PVDC), and chlorinated polyethylene (CPE), also benefit from this technology. Without the use of heat stabilizers, PVC could not be the widely used polymer that it is, with worldwide production of nearly 16 million metric tons in 1991 alone (see Vinyl polymers). [Pg.544]

Cables are available in a variety of constmctions and materials, in order to meet the requirements of industry specifications and the physical environment. For indoor usage, such as for Local Area Networks (LAN), the codes require that the cables should pass very strict fire and smoke release specifications. In these cases, highly dame retardant and low smoke materials are used, based on halogenated polymers such as duorinated ethylene—propylene polymers (like PTFE or FEP) or poly(vinyl chloride) (PVC). Eor outdoor usage, where fire retardancy is not an issue, polyethylene can be used at a lower cost. [Pg.323]

A variety of cellular plastics exists for use as thermal iasulation as basic materials and products, or as thermal iasulation systems ia combination with other materials (see Foamed plastics). Polystyrenes, polyisocyanurates (which include polyurethanes), and phenoHcs are most commonly available for general use, however, there is increasing use of other types including polyethylenes, polyimides, melamines, and poly(vinyl chlorides) for specific appHcations. [Pg.331]

About 35% of total U.S. LPG consumption is as chemical feedstock for petrochemicals and polymer iatermediates. The manufacture of polyethylene, polypropylene, and poly(vinyl chloride) requires huge volumes of ethylene (qv) and propylene which, ia the United States, are produced by thermal cracking/dehydrogenation of propane, butane, and ethane (see Olefin polymers Vinyl polymers). [Pg.187]

AppHcation of an adhesion-promoting paint before metal spraying improves the coating. Color-coded paints, which indicate compatibiHty with specific plastics, can be appHed at 20 times the rate of grit blasting, typically at 0.025-mm dry film thickness. The main test and control method is cross-hatch adhesion. Among the most common plastics coated with such paints are polycarbonate, poly(phenylene ether), polystyrene, ABS, poly(vinyl chloride), polyethylene, polyester, and polyetherimide. [Pg.134]

A review covers the preparation and properties of both MABS and MBS polymers (75). Literature is available on the grafting of methacrylates onto a wide variety of other substrates (76,77). Typical examples include the grafting of methyl methacrylate onto mbbers by a variety of methods chemical (78,79), photochemical (80), radiation (80,81), and mastication (82). Methyl methacrylate has been grafted onto such substrates as cellulose (83), poly(vinyl alcohol) (84), polyester fibers (85), polyethylene (86), poly(styrene) (87), poly(vinyl chloride) (88), and other alkyl methacrylates (89). [Pg.269]

The even-numbered carbon alpha olefins (a-olefins) from through C q are especially useful. For example, the C, C, and Cg olefins impart tear resistance and other desirable properties to linear low and high density polyethylene the C, Cg, and C q compounds offer special properties to plasticizers used in flexible poly(vinyl chloride). Linear C q olefins and others provide premium value synthetic lubricants linear 145 olefins are used in... [Pg.435]

Commonly used materials for cable insulation are poly(vinyl chloride) (PVC) compounds, polyamides, polyethylenes, polypropylenes, polyurethanes, and fluoropolymers. PVC compounds possess high dielectric and mechanical strength, flexibiUty, and resistance to flame, water, and abrasion. Polyethylene and polypropylene are used for high speed appHcations that require a low dielectric constant and low loss tangent. At low temperatures, these materials are stiff but bendable without breaking. They are also resistant to moisture, chemical attack, heat, and abrasion. Table 14 gives the mechanical and electrical properties of materials used for cable insulation. [Pg.534]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]

Increasingly, plastics are being used as parenteral packaging (qv) materials. Plastics such as poly(vinyl chloride), polyethylene, and polypropylene are employed. However, plastics may contain various additives that could leach into the product, such as plasticizers (qv) and antioxidants. PermeabiUty of plastics to oxygen, carbon dioxide, and water vapor must be tested in the selection of plastic containers. Furthermore, the plastic should withstand sterilization. Flaking of plastic particles should not occur and clarity necessary for inspection should be present. [Pg.234]

Over 70% of the total volume of thermoplastics is accounted for by the commodity resins polyethylene, polypropylene, polystyrene, and poly(vinyl chloride) (PVC) (1) (see Olefin polymers Styrene plastics Vinyl polymers). They are made in a variety of grades and because of their low cost are the first choice for a variety of appHcations. Next in performance and in cost are acryhcs, ceUulosics, and acrylonitrile—butadiene—styrene (ABS) terpolymers (see... [Pg.135]


See other pages where Polyethylene chloride is mentioned: [Pg.187]    [Pg.6]    [Pg.187]    [Pg.6]    [Pg.165]    [Pg.194]    [Pg.229]    [Pg.231]    [Pg.373]    [Pg.377]    [Pg.417]    [Pg.202]    [Pg.247]    [Pg.398]    [Pg.476]    [Pg.299]    [Pg.329]    [Pg.495]    [Pg.72]    [Pg.274]    [Pg.350]    [Pg.15]    [Pg.169]    [Pg.174]    [Pg.411]    [Pg.518]    [Pg.551]    [Pg.515]    [Pg.37]    [Pg.45]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Absorption isotherms, vinyl chloride polyethylene

Dodecyl methyl polyethylene oxide ammonium chloride

Polyvinyl Chloride, Polypropylene and Polyethylene Fabrications—Atlas

Thermal Destruction of Polypropylene, Polystyrene, Polyethylene, and Polyvinyl Chloride

Thermoplastics polyvinyl chloride, polyethylene

Vinyl chloride onto polyethylene, grafting

© 2024 chempedia.info