Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermoplastic polymer properties

Polymers that soften or melt and then solidify and regain their original properties on cooling are called thermoplastic. A thermoplastic polymer is usually a single strand of linear polymer with few if any cross-links. [Pg.1006]

Many challenging industrial and military applications utilize polychlorotriduoroethylene [9002-83-9] (PCTFE) where, ia addition to thermal and chemical resistance, other unique properties are requited ia a thermoplastic polymer. Such has been the destiny of the polymer siace PCTFE was initially synthesized and disclosed ia 1937 (1). The synthesis and characterization of this high molecular weight thermoplastic were researched and utilized duting the Manhattan Project (2). The unique comhination of chemical iaertness, radiation resistance, low vapor permeabiUty, electrical iasulation properties, and thermal stabiUty of this polymer filled an urgent need for a thermoplastic material for use ia the gaseous UF diffusion process for the separation of uranium isotopes (see Diffusion separation methods). [Pg.393]

Polyesters are known to be produced by many bacteria as intracellular reserve materials for use as a food source during periods of environmental stress. They have received a great deal of attention since the 1970s because they are biodegradable, can be processed as plastic materials, are produced from renewable resources, and can be produced by many bacteria in a range of compositions. The thermoplastic polymers have properties that vary from soft elastomers to rigid brittie plastics in accordance with the stmcture of the pendent side-chain of the polyester. The general stmcture of this class of compounds is shown by (3), where R = CH3, n = >100, and m = 0-8. [Pg.477]

Cycloahphatic diamines react with dicarboxyUc acids or their chlorides, dianhydrides, diisocyanates and di- (or poly-)epoxides as comonomers to form high molecular weight polyamides, polyimides, polyureas, and epoxies. Polymer property dependence on diamine stmcture is greater in the linear amorphous thermoplastic polyamides and elastomeric polyureas than in the highly crosslinked thermo set epoxies (2—4). [Pg.208]

Modified Bitumen Membranes. These membranes were developed in Europe during the late 1950s and have been used in the United States since the late 1970s. There are two basic types of modified asphalts and two types of reinforcement used in the membranes. The two polymeric modifiers used are atactic polypropylene (APP) and styrene—butadiene—styrene (SBS). APP is a thermoplastic polymer, whereas SBS is an elastomer (see Elastomers, thermoplastic elastomers). These modified asphalts have very different physical properties that affect the reinforcements used. [Pg.321]

Vinyls. Vinyl resins are thermoplastic polymers made principally from vinyl chloride other monomers such as vinyl acetate or maleic anhydride are copolymerized to add solubUity, adhesion, or other desirable properties (see Maleic anhydride, maleic acid, and fumaric acid). Because of the high, from 4,000 to 35,000, molecular weights large proportions of strong solvents are needed to achieve appHcation viscosities. Whereas vinyls are one of the finest high performance systems for steel, many vinyl coatings do not conform to VOC requirements (see Vinyl polymers). [Pg.365]

These LCT materials have very high tensile and flexural strength, and excellent mechanical and chemical resistance properties. Some commercial LCT are Vectra (Hoechst-Celanese) and Xydar (Amoco). Du Pont, ICI, GE, and Dow Chemical are also suppHers. Their appHcation in electronic embedding is stiU. in its infancy because of the high temperature processing requirement. Nevertheless, this class of thermoplastic polymers will play an important role in electronic embedding. [Pg.191]

Ethylene reacts by addition to many inexpensive reagents such as water, chlorine, hydrogen chloride, and oxygen to produce valuable chemicals. It can be initiated by free radicals or by coordination catalysts to produce polyethylene, the largest-volume thermoplastic polymer. It can also be copolymerized with other olefins producing polymers with improved properties. Eor example, when ethylene is polymerized with propylene, a thermoplastic elastomer is obtained. Eigure 7-1 illustrates the most important chemicals based on ethylene. [Pg.188]

A copolymer, on the other hand, results from two different monomers hy addition polymerization. For example, a thermoplastic polymer with better properties than an ethylene homopolymer comes from copolymerizing ethylene and propylene ... [Pg.302]

Articles made from polypropylene have good electrical and chemical resistance and low water absorption. Its other useful characteristics are its light weight (lowest thermoplastic polymer density), high abrasion resistance, dimensional stability, high impact strength, and no toxicity. Table 12-3 shows the properties of polypropylene. [Pg.332]

PET, PTT, and PBT have similar molecular structure and general properties and find similar applications as engineering thermoplastic polymers in fibers, films, and solid-state molding resins. PEN is significantly superior in terms of thermal and mechanical resistance and barrier properties. The thermal properties of aromatic-aliphatic polyesters are summarized in Table 2.6 and are discussed above (Section 2.2.1.1). [Pg.44]

Fibers are made from thermoplastic polymers. The polymers are made into fiber form, normally by extrusion of molten polymer or a polymer solution through tiny holes. The resulting fiber is stretched to orient the molecules. This orientation of the molecules lines up the polymer molecules and produces the strength and other properties needed in a textile yam. [Pg.116]

For the most part, plastics are man-made since very few plcistlcs are natural, i.e.- nature-made. Natural plastics include large molecular-wei t proteins and similar molecules. Man-made plastics can be classified as either thermoplastic or thermosetting. Each class derives its physical properties from the effects of application of heat, the former becoming "plastic" (that is- it becomes soft and tends to flow) while the latter becomes less "plastic" and tends to remain in a softened state. This difference in change of state derives from the actual nature of the chemical bonds in the polymer. Thermoplastic polymers generally consist of molecules composed of many monomeric units. A good example is that of polyethylene where the monomeric unit is -(CH2-CH2)-. The molecule is linear... [Pg.403]

This difference in spatial characteristics has a profound effect upon the polymer s physical and chemical properties. In thermoplastic polymers, application of heat causes a change from a solid or glassy (amorphous) state to a flowable liquid. In thermosetting polymers, the change of state occurs from a rigid solid to a soft, rubbery composition. The glass transition temperature, Tg, ... [Pg.404]

Polytetrafluoroethylene (Teflon) (PTFE) is the most corrosion-resistant thermoplastic polymer. This polymer is resistant to practically every known chemical or solvent combination and has the highest useful temperature of commercially available polymers. It retains its properties up to 500°F (260°C). Because of its exceedingly high molecular weight PTFE is processed by sintering. The PTFE resin is compressed into shapes under high pressure at room temperature and then heated to 700°F (371°C) to complete the sintering process. [Pg.37]

A thermoplastic polymer can be repeatedly softened by heating, molded to a new shape, and then cooled to harden it. Thermoplastic polymers consist of chains that have no permanent chemical bonds to their neighbors. When we heat them, their molecules take on the properties of a viscous liquid that flows when we apply pressure. When we cool them, they solidify to take on a shape that remains constant until they are once again subjected to heat and pressure. We can dissolve thermoplastic polymers in solvents without destroying any chemical bonds. [Pg.26]

Poly(ethylene terephthalate), (PET), is a thermoplastic polymer widely used in the production of fibers and films on exposure to near ultraviolet light, PET fibers tend to lose their elasticity and break easily PET films become discolored, brittle and develop crazed surfaces. Such deterioration in properties has been attributed to photochemical reactions initiated by the... [Pg.240]

The terms thermoplastic and thermoset refer to the processability of a particular polymer and the properties of the finished article. Thermoplastic polymers are mostly a linear or branched linkage of monomers containing many thousands of repeat units. All the commodity polymers and most of the engineering polymers are thermoplastic. [Pg.68]

Glass fibres dominate this field either as long continuous fibres (several centimetres long), which are hand-laid with the thermoset precursors, e.g., phenolics, epoxy, polyester, styrenics, and finally cured (often called fibre glass reinforcement plastic or polymer (FRP)). With thermoplastic polymers, e.g., PP, short fibres (less than 1 mm) are used. During processing with an extruder, these short fibres orient in the extrusion/draw direction giving anisotropic behaviour (properties perpendicular to the fibre direction are weaker). [Pg.113]

Thermoplastic polymer macromolecules usually tend to become oriented (molecular chain axis aligns along the extrusion direction) upon extrusion or injection moulding. This can have implications on the mechanical and physical properties of the polymer. By orienting the sample with respect to the coordinate system of the instrument and analysing the sample with polarised Raman (or infrared) light, we are able to get information on the preferred orientation of the polymer chains (see, for example, Chapter 8). Many polymers may also exist in either an amorphous or crystalline form (degree of crystallinity usually below 50%, which is a consequence of their thermal and stress history), see, for example, Chapter 7. [Pg.528]


See other pages where Thermoplastic polymer properties is mentioned: [Pg.342]    [Pg.342]    [Pg.235]    [Pg.394]    [Pg.404]    [Pg.515]    [Pg.296]    [Pg.482]    [Pg.36]    [Pg.508]    [Pg.85]    [Pg.415]    [Pg.317]    [Pg.35]    [Pg.35]    [Pg.36]    [Pg.139]    [Pg.874]    [Pg.916]    [Pg.350]    [Pg.351]    [Pg.18]    [Pg.565]    [Pg.41]    [Pg.249]    [Pg.388]    [Pg.485]    [Pg.272]    [Pg.339]   
See also in sourсe #XX -- [ Pg.1223 ]

See also in sourсe #XX -- [ Pg.1130 ]




SEARCH



Thermoplastics properties

© 2024 chempedia.info