Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Emulsions thermodynamics

Emulsions are heterogeneous dispersions of immiscible liquids pharmaceutically both types, oil in water (o/w) and water in oil (w/o), are of interest. Mechanical work is required to break up the liquid to be dispersed to small droplets. Thermodynamically emulsions are unstable systems, because the interfacial tension between the two liquids causes droplets of the disperse phase to coalesce, approaching the state of complete phase separation. To counteract this tendency an emulsifying agent must be added that occupies the interfaces between dispersed droplets and bulk liquid thereby lowering the interfacial tension. [Pg.641]

Microemulsions are treated in a separate section in this chapter. Unlike macro- or ordinary emulsions, microemulsions are generally thermodynamically stable. They constitute a distinctive type of phase, of structure unlike ordinary homogeneous bulk phases, and their study has been a source of fascination. Finally, aerosols are discussed briefly in this chapter, although the topic has major differences from those of emulsions and foams. [Pg.500]

It is quite clear, first of all, that since emulsions present a large interfacial area, any reduction in interfacial tension must reduce the driving force toward coalescence and should promote stability. We have here, then, a simple thermodynamic basis for the role of emulsifying agents. Harkins [17] mentions, as an example, the case of the system paraffin oil-water. With pure liquids, the inter-facial tension was 41 dyn/cm, and this was reduced to 31 dyn/cm on making the aqueous phase 0.00 IM in oleic acid, under which conditions a reasonably stable emulsion could be formed. On neutralization by 0.001 M sodium hydroxide, the interfacial tension fell to 7.2 dyn/cm, and if also made O.OOIM in sodium chloride, it became less than 0.01 dyn/cm. With olive oil in place of the paraffin oil, the final interfacial tension was 0.002 dyn/cm. These last systems emulsified spontaneously—that is, on combining the oil and water phases, no agitation was needed for emulsification to occur. [Pg.504]

Microemulsion Polymerization. Polyacrylamide microemulsions are low viscosity, non settling, clear, thermodynamically stable water-in-od emulsions with particle sizes less than about 100 nm (98—100). They were developed to try to overcome the inherent settling problems of the larger particle size, conventional inverse emulsion polyacrylamides. To achieve the smaller microemulsion particle size, increased surfactant levels are required, making this system more expensive than inverse emulsions. Acrylamide microemulsions form spontaneously when the correct combinations and types of oils, surfactants, and aqueous monomer solutions are combined. Consequendy, no homogenization is required. Polymerization of acrylamide microemulsions is conducted similarly to conventional acrylamide inverse emulsions. To date, polyacrylamide microemulsions have not been commercialized, although work has continued in an effort to exploit the unique features of this technology (100). [Pg.143]

A classification of dispersed systems on this basis has been worked out by Pawlow (30) (1910), who introduces a new variable called the concentration of the dispersed phase, i.e., the ratio of the masses of the two constituents of an emulsion, etc. When the dispersed phase is finely divided the thermodynamic potential is a homogeneous function of zero degree in respect of this concentration. [Pg.446]

A microemulsion (p.E) is a thermodynamically stable, transparent (in the visible) droplet type dispersion of water (W) and oil (O a saturated or unsaturated hydrocarbon) stabilized by a surfactant (S) and a cosurfactant (CoS a short amphiphile compound such as an alcohol or an amine) [67]. Sometimes the oil is a water-insoluble organic compound which is also a reactant and the water may contain mineral acids or salts. Because of the small dispersion size, a large amount of surfactant is required to stabilize microemulsions. The droplets are very small (about 100-1000 A [68]), about 100 times smaller than those of a typical emulsion. The existence of giant microemulsions (dispersion size about 6000 A) has been demonstrated [58]. [Pg.281]

Of special interest in liquid dispersions are the surface-active agents that tend to accumulate at air/ liquid, liquid/liquid, and/or solid/liquid interfaces. Surfactants can arrange themselves to form a coherent film surrounding the dispersed droplets (in emulsions) or suspended particles (in suspensions). This process is an oriented physical adsorption. Adsorption at the interface tends to increase with increasing thermodynamic activity of the surfactant in solution until a complete monolayer is formed at the interface or until the active sites are saturated with surfactant molecules. Also, a multilayer of adsorbed surfactant molecules may occur, resulting in more complex adsorption isotherms. [Pg.250]

Emulsions are thermodynamically unstable systems. However, using appropriate emulsifying agents... [Pg.268]

Microemulsions are a convenient medium for preparing microgels in high yields and rather uniform size distribution. The name for these special emulsions was introduced by Schulman et al. [48] for transparent systems containing oil, water and surfactants, although no precise and commonly accepted definitions exist. In general a microemulsion may be considered as a thermodynamically stable colloidal solution in which the disperse phase has diameters between about 5 to lOOnm. [Pg.143]

An emulsion is a dispersed system of two immiscible phases. Emulsions are present in several food systems. In general, the disperse phase in an emulsion is normally in globules 0.1-10 microns in diameter. Emulsions are commonly classed as either oil in water (O/W) or water in oil (W/O). In sugar confectionery, O/W emulsions are most usually encountered, or perhaps more accurately, oil in sugar syrup. One of the most important properties of an emulsion is its stability, normally referred to as its emulsion stability. Emulsions normally break by one of three processes creaming (or sedimentation), flocculation or droplet coalescence. Creaming and sedimentation originate in density differences between the two phases. Emulsions often break by a mixture of the processes. The time it takes for an emulsion to break can vary from seconds to years. Emulsions are not normally inherently stable since they are not a thermodynamic state of matter. A stable emulsion normally needs some material to make the emulsion stable. Food law complicates this issue since various substances are listed as emulsifiers and stabilisers. Unfortunately, some natural substances that are extremely effective as emulsifiers in practice are not emulsifiers in law. An examination of those materials that do stabilise emulsions allows them to be classified as follows ... [Pg.24]

The two main assumptions underlying the derivation of Eq. (5) are (1) thermodynamic equilibrium and (2) conditions of constant temperature and pressure. These assumptions, especially assumption number 1, however, are often violated in food systems. Most foods are nonequilibrium systems. The complex nature of food systems (i.e., multicomponent and multiphase) lends itself readily to conditions of nonequilibrium. Many food systems, such as baked products, are not in equilibrium because they experience various physical, chemical, and microbiological changes over time. Other food products, such as butter (a water-in-oil emulsion) and mayonnaise (an oil-in-water emulsion), are produced as nonequilibrium systems, stabilized by the use of emulsifying agents. Some food products violate the assumption of equilibrium because they exhibit hysteresis (the final c/w value is dependent on the path taken, e.g., desorption or adsorption) or delayed crystallization (i.e., lactose crystallization in ice cream and powdered milk). In the case of hysteresis, the final c/w value should be independent of the path taken and should only be dependent on temperature, pressure, and composition (i.e.,... [Pg.24]

Based on the above observations, one can conclude that at temperatures below about 10°C, the thermodynamic optimum structure is the target structure a combination of both emulsifiers adsorbed at the surface. At higher temperatures, however, there is no clear thermodynamic difference between an emulsion where the surface is covered with El only or an emulsion where the surface is covered by a combination of El and E2. Since El is available in excess... [Pg.174]

Emulsion derived foams prepared via the concentrated emulsion pathway are characterized by highly interconnected pores, thus offering density values as low as 0.02 g/cm and a relatively narrow size distribution in the pm-range resulting from a thermodynamically stable system. This principle allows for the synthesis of organic as well as inorganic foams that offer a wide range of appHcations [20, 21]. Recently such technique has been applied to form injectable siloxane foams where the emulsified liquid was removed supercritically in order to avoid pore collapse [22]. [Pg.166]

The relation between HLB and emulsion stability and structure could be suggested based on this thermodynamic relation. HLB values can also be estimated from the structural groups of the emulsifier (Table 9.4). [Pg.177]

As mentioned earlier, ordinary emulsions as prepared by mixing oil, water, and emulsifier are thermodynamically unstable. That is, such an emulsion may be stable over a length of time, but it will finally separate into two phases (the oil phase and the aqueous phase). They can also be separated by centrifugation. These emulsions are opaque, which means that the dispersed phase (oil or water) is present in the form of large droplets (more than a micrometer and thus visible to the naked eye). [Pg.183]

The reaction described in this example is carried out in miniemulsion.Miniemulsions are dispersions of critically stabilized oil droplets with a size between 50 and 500 nm prepared by shearing a system containing oil, water,a surfactant and a hydrophobe. In contrast to the classical emulsion polymerization (see 5ect. 2.2.4.2), here the polymerization starts and proceeds directly within the preformed micellar "nanoreactors" (= monomer droplets).This means that the droplets have to become the primary locus of the nucleation of the polymer reaction. With the concept of "nanoreactors" one can take advantage of a potential thermodynamic control for the design of nanoparticles. Polymerizations in such miniemulsions, when carefully prepared, result in latex particles which have about the same size as the initial droplets.The polymerization of miniemulsions extends the possibilities of the widely applied emulsion polymerization and provides advantages with respect to copolymerization reactions of monomers with different polarity, incorporation of hydrophobic materials, or with respect to the stability of the formed latexes. [Pg.187]

In order to obtain a thermodynamically stable micro emulsion, the analysis of the phase behaviour is indispensable. With bovine serum albumin instead of an enzyme (because of the cost of the bio-catalyst) phase behaviour studies are shown in Fig. 2. A strong shift of the phase boundary is observed, yielding a system that solubilises much less water in the presence of the protein. In case of hydrophobic enzymes, the addition of dry lyophilised protein to an already prepared reverse micellar solution can also work well [53]. [Pg.191]

An alternative to the injection method for importing enzymes into a microemulsion is the phase transfer method. In this method, a layer of an aqueous enzyme solution is located under a mixture of surfactant and oil. Upon gentle shaking, the enzyme is transferred into the reverse micelles of the hydrocarbon phase. Finally, the excess of water is removed and the hydrophobic substrates can be added. The main advantage of this method is that it ensures thermodynamically stable micro emulsions with maximum water concentrations. However, the method is very time consuming. The method is often applied in order to purify, concentrate or renaturate enzymes in the reverse micellar extraction process [54-58]. [Pg.191]

There s another example of water-in-oil compartmentation, which can circumvent this problem water-in-oil emulsions. These can be prepared by adding to the oil a small amount of aqueous surfactant solution, with the formation of more or less spherical aggregates (water bubbles) having dimensions in the range of 20-100 p,m in diameter. These systems are generally not thermodynamically stable, and tend to de-nfix with time. However, they can be long-lived enough to permit the observation of chemical reactions and a kinetic study. [Pg.196]

The lipid components of food are known to be critical in the development of much of a food s flavor. Modifications to lipid modifying enzymes such as lipases have led to new products useful in the rapid preparation of other food components Chapter 13,14), Better utilization of lipid constituents in food products can be gained from a better understanding of the thermodynamic and physicochemical characteristics of emulsions. Significant advancement in emulsion chemistry and food engineering have recently appeared in the literature and are an important portion of this volume Chapter 19),... [Pg.6]

In a subsequent theoretical analysis, Princen [26] initially used a model of infinitely long cylindrical drops to relate the geometric and thermodynamic properties of monodisperse HIPEs to the volume fraction of the dispersed phase. Thus the analysis could be restricted to a two-dimensional cross-section of the emulsion. Two principle emulsion parameters were considered the film thickness between adjacent drops (h) and the contact angle (0) [27-29]. The effects of these variables on the volume fraction, , both in the presence and absence of a compressive force on the emulsion, were considered. The results indicated that if both h and 0 are kept at zero, the maximum volume fraction () of the uncompressed emulsion is 0.9069, which is equivalent to = 0.7405 in real emulsions with spherical droplets (cf. Lissant s work). If 0 is zero (or constant) and h is increased, the maximum value of decreases on the other hand, increasing 0 with zero or constant h causes to increase above the value 0.9069, again at zero compression. This implies that, in the presence of an appreciable contact angle, without any applied compressive force, values of <(> in excess of the maximum value for undeformed droplets can occur. Thus, the dispersed phase... [Pg.166]

Another associated issue was the possibility of inactivating the LRES (lym-phoreticuloendothelial system). By analogy with other injectable systems, it could also be deduced that the injectable emulsion system needed to be sterile and apy-rogenic and free of acute or chronic toxicities from components or their associated degradation products. It also followed that the injectable system required to be stable, although how stability was to be determined and, more to the point, measured, has remained an issue to the present day. This is mainly because emulsions are thermodynamically unstable although their stability can be extended by formulation. As a result emulsion products are now available that are submicron in diameter, sterile, and stable for several years after preparation. In major part this has been due to the use of phospholipids as stabilizers and emulsifiers, in particular the mixed products identified as the lecithin of commerce. [Pg.244]

Dickinson, E., Semenova, M.G., Belyakova, L.E., Antipova, A.S., Il in, M.M., Tsapkina, E.N., Ritzoulis, C. (2001). Analysis of light scattering data on the calcium ion sensitivity of caseinate solution thermodynamics relationship to emulsion flocculation. Journal of Colloid and Interface Science, 239, 87-97. [Pg.27]


See other pages where Emulsions thermodynamics is mentioned: [Pg.294]    [Pg.21]    [Pg.294]    [Pg.21]    [Pg.3]    [Pg.304]    [Pg.315]    [Pg.771]    [Pg.98]    [Pg.433]    [Pg.304]    [Pg.165]    [Pg.201]    [Pg.211]    [Pg.29]    [Pg.31]    [Pg.154]    [Pg.658]    [Pg.109]    [Pg.96]    [Pg.140]    [Pg.126]    [Pg.191]    [Pg.297]    [Pg.603]    [Pg.229]    [Pg.163]    [Pg.346]    [Pg.87]   
See also in sourсe #XX -- [ Pg.176 , Pg.177 , Pg.178 ]

See also in sourсe #XX -- [ Pg.176 , Pg.177 , Pg.178 ]




SEARCH



© 2024 chempedia.info