Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrophobic substrates

Figure C2.3.17. Model of half-cylindrical aggregates (hemimicelles) on a crystalline hydrophobic substrate, such as for tetradecyltrimethylammonium bromide on M0S2 [91], Adapted from figure 2 of [89],... Figure C2.3.17. Model of half-cylindrical aggregates (hemimicelles) on a crystalline hydrophobic substrate, such as for tetradecyltrimethylammonium bromide on M0S2 [91], Adapted from figure 2 of [89],...
Figure C2.4.5. Horizontal transfer on a hydrophobic substrate. This metliod is useful for very rigid films tliat are in tire solid state in the ji-A-diagram. Figure C2.4.5. Horizontal transfer on a hydrophobic substrate. This metliod is useful for very rigid films tliat are in tire solid state in the ji-A-diagram.
In comparison with classical processes involving thermal separation, biphasic techniques offer simplified process schemes and no thermal stress for the organometal-lic catalyst. The concept requires that the catalyst and the product phases separate rapidly, to achieve a practical approach to the recovery and recycling of the catalyst. Thanks to their tunable solubility characteristics, ionic liquids have proven to be good candidates for multiphasic techniques. They extend the applications of aqueous biphasic systems to a broader range of organic hydrophobic substrates and water-sensitive catalysts [48-50]. [Pg.278]

The interest and success of the enzyme-catalyzed reactions in this kind of media is due to several advantages such as (i) solubilization of hydrophobic substrates (ii) ease of recovery of some products (iii) catalysis of reactions that are unfavorable in water (e.g. reversal of hydrolysis reactions in favor of synthesis) (iv) ease of recovery of insoluble biocatalysts (v) increased biocatalyst thermostability (vi) suppression of water-induced side reactions. Furthermore, as already said, enzyme selectivity can be markedly influenced, and even reversed, by the solvent. [Pg.7]

Hydrolysis of substrates is performed in water, buffered aqueous solutions or biphasic mixtures of water and an organic solvent. Hydrolases tolerate low levels of polar organic solvents such as DMSO, DMF, and acetone in aqueous media. These cosolvents help to dissolve hydrophobic substrates. Although most hydrolases require soluble substrates, lipases display weak activity on soluble compounds in aqueous solutions. Their activity markedly increases when the substrate reaches the critical micellar concentration where it forms a second phase. This interfacial activation at the lipid-water interface has been explained by the presence of a... [Pg.133]

Aqueous-organic two-phase reaction has been widely performed [18]. One of the purposes of using two-phase reaction system is to control the substrate concentration in aqueous phase where the biocatalysts exist. Hydrophobic substrate and products dissolve easily in the organic phase, so that the concentration in the aqueous phase decreases. The merits of controlling and decreasing the substrate concentration in the aqueous phase are as follows ... [Pg.209]

How can dehydrogenases catalyze reactions of very hydrophobic substrates ... [Pg.295]

Rhodium catalysis in an aqueous-organic biphasic system was highly effective for intramolecular [2+2+2] cyclotrimerization. It has been shown that the use of a biphasic system could control the concentration of an organic hydrophobic substrate in the aqueous phase, thus increasing the reaction selectivity. The intramolecular cyclization for... [Pg.131]

An analogy can be drawn between pericyclic reactions in water and under high pressure. Water s internal pressure on hydrophobic substrates acts on the volume of activation of a reaction in the same way as an externally applied pressure does. Thus, the internal pressure of water influences the rates of pericyclic reactions in water in the same direction as external pressures. The use of salting-out salts will further increase the rate of pericyclic reactions. Recently, Kumar quantified the relationship between internal pressure and the rate of the aqueous Diels-Alder reaction. A linear relationship between the two was observed.5... [Pg.375]

Cheriyan, M., Toone, E.J. and Fierke, C.A. (2007) Mutagenesis of the phosphate-binding pocket of KDPG aldolase enhances selectivity for hydrophobic substrates. Protein Science A Publication of the Protein Society, 16, 2368-2377. [Pg.133]

Second, P-gp differs from other transporters in that it recognizes its substrates when dissolved in the lipid membrane [52], and not when dissolved in aqueous solution. The site of recognition and binding has been shown to be located in the membrane leaflet facing the cytosol [53, 54], This implies that the membrane concentration of the substrate, Csm, determines activation [57]. Since the nature of a molecular interaction is strongly influenced by the solvent, the lipid membrane must be taken into account as the solvent for the SAR analysis of P-gp. Under certain conditions, the effect of additional solvents or excipients (used to apply hydrophobic substrates or inhibitors) on the lipid membrane and/or on the transporter must also be considered. Lipophilicity of substrates has long been known to play an important role in P-gp-substrate interactions nevertheless, the correlation of the octanol/water partition coefficients with the concentration of half-maximum... [Pg.463]

Torres, E. Baeza, A., and Vazquez-Duhalt, R., Chemical modification of heme group improves hemoglobin affinity for hydrophobic substrates in organic media. Journal of Molecular Catalysis, B-Enzymatic, 2002. 19 pp. 437—441. [Pg.225]

The concept of zeolite action was tested in a particular reaction where the enzyme is exposed from the beginning to an acidic environment the esterification of geraniol with acetic acid catalyzed by Candida antarctica lipase B immobilized on zeolite NaA [219]. Lipases have been used for the hydrolysis of triglycerides and due to their ambivalent hydrophobic/hydrophilic properties they are effective biocatalysts for the hydrolysis of hydrophobic substrates [220]. When water-soluble lipases are used in organic media they have to be immobilized on solid supports in order to exhibit significant catalytic activity. [Pg.469]

More recently, the water-soluble paracyclophane (263) was demonstrated to form crystalline complexes with a range of hydrophobic substrates under acid conditions (Odashima, Itai, Iitaka Koga, 1980). For example, with durene (264), a complex of stoichiometry [host.4HCl. durene.4H20] was obtained. The X-ray structure of this species indicates... [Pg.161]

Provided that equilibrium is maintained between the aqueous and micellar pseudophases (designated by subscripts W and M) the overall reaction rate will be the sum of rates in water and the micelles and will therefore depend upon the distribution of reactants between each pseudophase and the appropriate rate constants in the two pseudophases. Early studies of reactivity in aqueous micelles showed the importance of substrate hydropho-bicity in determining the extent of substrate binding to micelles for example, reactions of a very hydrophilic substrate could be essentially unaffected by added surfactant, whereas large effects were observed with chemically similar, but hydrophobic substrates (Menger and Portnoy, 1967 Cordes and Gitler, 1973 Fendler and Fendler, 1975). [Pg.222]

Rate constants of bimolecular, micelle-assisted, reactions typically go through maxima with increasing concentration of inert surfactant (Section 3). But a second rate maximum is observed in very dilute cationic surfactant for aromatic nucleophilic substitution on hydrophobic substrates. This maximum seems to be related to interactions between planar aromatic molecules and monomeric surfactant or submicellar aggregates. These second maxima are not observed with nonplanar substrates, even such hydrophobic compounds as p-nitrophenyl diphenyl phosphate (Bacaloglu, R. 1986, unpublished results). [Pg.310]

The surface pressure-area (tc-A) isotherm measurements and LB film transfer were performed with the use of a KSV 5000 minitrough (KSV Instrument Co., Finland) operated at a continuous speed for two barriers of 10 cm2/min at 20°C. The buffer used in the present work was composed of 10 mM MES, 2 mM ascorbic acid sodium salt, and a given concentration of salt or polymers (pH =7.0). The accuracy of the surface pressure measurement was 0.01 mN/m. Monolayers of the PS I were transferred at 10 mN/m on hydrophobic substrate surface by horizontal lifting method. [Pg.162]

Cationic ions and polyelectrolytes can stabilize the formation of the PS I monolayers at the air-water interface. These complex monolayers can be transferred onto the hydrophobic substrate surfaces by horizontal lifting method. The PS I/polyelectrolyte complex film may be used for the development of a biosystem for the studies on photoinduced electron transfer and for hydrogen evolution. [Pg.168]

Upon reaction, the heterogenized catalyst can be easily separated from the reaction mixture by filtration and then recycled. The hydro-phobic substrate is microemulsified in water and subjected to an orga-nometallic catalyst, which is entrapped within a partially hydrophobized sol-gel matrix. The surfactant molecules, which carry the hydrophobic substrate, adsorb/desorb reversibly on the surface of the sol-gel matrix breaking the micellar structure, spilling their substrate load into the porous medium that contains the catalyst. A catalytic reaction then takes place within the ceramic material to form the desired products that are extracted by the desorbing surfactant, carrying the emulsified product back into the solution. [Pg.123]

When binding of a substrate molecule at an enzyme active site promotes substrate binding at other sites, this is called positive homotropic behavior (one of the allosteric interactions). When this co-operative phenomenon is caused by a compound other than the substrate, the behavior is designated as a positive heterotropic response. Equation (6) explains some of the profile of rate constant vs. detergent concentration. Thus, Piszkiewicz claims that micelle-catalyzed reactions can be conceived as models of allosteric enzymes. A major factor which causes the different kinetic behavior [i.e. (4) vs. (5)] will be the hydrophobic nature of substrate. If a substrate molecule does not perturb the micellar structure extensively, the classical formulation of (4) is derived. On the other hand, the allosteric kinetics of (5) will be found if a hydrophobic substrate molecule can induce micellization. [Pg.449]


See other pages where Hydrophobic substrates is mentioned: [Pg.281]    [Pg.259]    [Pg.496]    [Pg.132]    [Pg.102]    [Pg.109]    [Pg.142]    [Pg.383]    [Pg.301]    [Pg.301]    [Pg.245]    [Pg.409]    [Pg.96]    [Pg.540]    [Pg.34]    [Pg.161]    [Pg.162]    [Pg.165]    [Pg.271]    [Pg.14]    [Pg.127]    [Pg.123]    [Pg.405]    [Pg.411]    [Pg.414]    [Pg.452]    [Pg.269]    [Pg.339]   
See also in sourсe #XX -- [ Pg.209 ]

See also in sourсe #XX -- [ Pg.974 ]

See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Hydrocarbon-hydrophobic substrates

Hydrophobic forces, substrate

Hydrophobic forces, substrate bound

Hydrophobic organic substrates

Hydrophobic substrates, friction coefficients

Langmuir-Blodgett film deposition with hydrophobic substrate

Langmuir-Blodgett film deposition with hydrophobic substrate molecules

Langmuir-Blodgett film deposition with hydrophobic substrate monolayers

Reductions of highly hydrophobic substrates

Spreading of Surfactant Solutions over Hydrophobic Substrates

Substrates, hydrophilic, hydrophobic

© 2024 chempedia.info