Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal decomposition powder

Tellurium trioxide, TeOa, is an orange yellow powder made by thermal decomposition of telluric(VI) acid Te(OH)g. It is a strong oxidising agent which will, like H2Se04, oxidise hydrogen chloride to chlorine. It dissolves in hot water to give telluric(VI) acid. This is a weak acid and quite different from sulphuric and selenic acids. Two series of salts are known. [Pg.305]

Silicon is prepared commercially by heating silica and carbon in an electric furnace, using carbon electrodes. Several other methods can be used for preparing the element. Amorphous silicon can be prepared as a brown powder, which can be easily melted or vaporized. The Gzochralski process is commonly used to produce single crystals of silicon used for solid-state or semiconductor devices. Hyperpure silicon can be prepared by the thermal decomposition of ultra-pure trichlorosilane in a hydrogen atmosphere, and by a vacuum float zone process. [Pg.33]

The evidence obtained in compaction experiments is of particular interest in the present context. Figure 3.22 shows the results obtained by Avery and Ramsay for the isotherms of nitrogen on compacts of silica powder. The hysteresis loop moved progressively to the left as the compacting pressure increased, but the lower closure point did not fall below a relative pressure of 0-40. Similar results were obtained in the compaction of zirconia powder both by Avery and Ramsay (cf. Fig. 4.5), and by Gregg and Langford, where the lower closure point moved down to 0-42-0-45p° but not below. With a mesoporous magnesia (prepared by thermal decomposition of the hydrated carbonate) the position of the closure point... [Pg.154]

Physical properties of hexachloroethane are Hsted in Table 11. Hexachloroethane is thermally cracked in the gaseous phase at 400—500°C to give tetrachloroethylene, carbon tetrachloride, and chlorine (140). The thermal decomposition may occur by means of radical-chain mechanism involving -C,C1 -C1, or CCl radicals. The decomposition is inhibited by traces of nitric oxide. Powdered 2inc reacts violentiy with hexachloroethane in alcohoHc solutions to give the metal chloride and tetrachloroethylene aluminum gives a less violent reaction (141). Hexachloroethane is unreactive with aqueous alkali and acid at moderate temperatures. However, when heated with soHd caustic above 200°C or with alcohoHc alkaHs at 100°C, decomposition to oxaHc acid takes place. [Pg.15]

Cobalt salts are used as activators for catalysts, fuel cells (qv), and batteries. Thermal decomposition of cobalt oxalate is used in the production of cobalt powder. Cobalt compounds have been used as selective absorbers for oxygen, in electrostatographic toners, as fluoridating agents, and in molecular sieves. Cobalt ethyUiexanoate and cobalt naphthenate are used as accelerators with methyl ethyl ketone peroxide for the room temperature cure of polyester resins. [Pg.382]

While this book does not cover shock-sensitive powders, such as primary explosives, UN-DOT Class 4.1 Flammable Solids are within its scope. These include thermally unstable powders that can both deflagrate in an oxidant and decompose in bulk. Examples include some nitrogen blowing agents. Should ignition occur at any point, a propagating decomposition... [Pg.175]

Gep2 is formed as a volatile white solid (mp 110°) by the action of Gep4 on powdered Ge at 150-300° it has a unique structure in which trigonal pyramidal [GePsI units share 2 P atoms to form infinite spiral chains (Pig. 10.2). Pale-yellow GeCl2 can be prepared similarly at 300° or by thermal decomposition of GeHCls at 70°. Typical reactions are summarized in the scheme ... [Pg.376]

From the results obtained by thermal decomposition of both low-molecular weight vicinal dichlorides in the gas phase [74,75] and of the copolymers of vinyl chloride and /rthermal instability of PVC to the individual head-to-head structures. Crawley and McNeill [76] chlorinated m-1,4-polybutadiene in methylene chloride, leading to a head-to-head, and a tail-to-tail PVC. They found, for powder samples under programmed heating conditions, that head-to-head polymers had a lower threshold temperature of degradation than normal PVC, but reached its maximum rate of degradation at higher temperatures. [Pg.324]

Tantalum powder particle size, 334 production, 332 Thermal decomposition of CoNbOFj, 54,210 fluorotantalates, 195, 200 oxyfluoroniobates, 202-205,210 Nb02F, 25,210-211 niobium hydroxides, 300-303 niobium peroxide, 305-308 tantalum hydroxide, 300-303 tantalum peroxide, 305-308 Tributyl phosphate, 279-281... [Pg.388]

B. l-Bromo-2-fluorobenzene. Cautionl This step should be carried outm a hood because the PFS evolved on thermal decomposition of the diazonium salt is poisonous. The apparatus consists of a 1-1., three-necked, round-bottomed flask equipped with a thermometer, a condenser, a magnetic stirrer (optional), and a 250-ml. Erlenmeyer flask that is attached by means of a short rubber Gooch connecting tube. The dry powdered hexafluorophosphate salt is placed in the Erlenmeyer flask, and 300 ml. of heavy mineral oil is placed in the round-bottomed flask. The mineral oil is heated to 165-170° by means of an oil bath or electric heating mantle and maintained at this temperature while the salt is added rapidly in portions over a period of 30 minutes. The flask is cooled rapidly to room temperature, the side flask is removed, and 400 ml. of 10% aqueous sodium carbonate is added slowly through the condenser. The mixture is steam-distilled until no more oil is visible in the distillate. [Pg.13]

Beta SiC powder from the decomposition of methyl-trichlorosilane (MTS) in the presence of hydrogen in an argon plasma. Also from the gaseous thermal decomposition of tetramethylsilane, Si(CH3)4, in a flowthrough reactor between 850 and 1500°CP 1 and by the reaction of acetylene and silane. [Pg.476]

Sintered Electrodes In these electrodes the active materials are present in pores of a sintered nickel support plate. This plate is manufactured by sintering of highly disperse nickel powder produced by thermal decomposition of nickel pentacarbonyl Ni(CO)5. The plates are filled by impregnating them in alternation with concentrated solutions of salts of the corresponding metals (Ni or Cd) and with an alkali solution serving to precipitate insoluble oxides or hydroxides. [Pg.355]

Kanzawa, A., Y. Arai, 1981. Thermal energy storage by the chemical reaction (Augmentation of heat transfer and thermal decomposition in the CaO/Ca(OH)2 powder), Solar Energy, 289-294. [Pg.390]

Aryl and, more so, chlorine substituents on silicon enhance thermal stability of silacyclobutanes. The rate of the first-order thermal decomposition of silacyclobutanes varies inversely with the dielectric constant of the solvent used. Radical initiators have no effect on the thermal decomposition and a polar mechanism was suggested. Thermal polymerization of cyclo-[Ph2SiCH212 has been reported to occur at 180-200°C. The product was a crystalline white powder which was insoluble in benzene and other common organic solvents [19]. [Pg.26]

Metallic powders are made several different ways. They can be prepared by reducing salts in a stream of a reducing gas, such as hydrogen chlorides of metals are commonly used but oxides are used too. Thermal decomposition in a vacuum of metal carbonyls or metal salts of organic acids, such as formates, produces metal powders. Surface areas of such powders are around 1.5 m2/g. Powders can also be made from electrolytic reduction of salts in organic solvents and by atomization of the metal. [Pg.4]

Copper catalyzes the decomposition of sulphonyl azides in benzene very slowly. When methanesulphonyl azide was boiled under reflux in benzene solution in the presence of an excess of freshly reduced copper powder, some decomposition occurred to give methanesulphonamide and azide was recovered 78>. Transition metal complexes have been found to exert a marked effect upon the yields of products and isomer ratios formed in the thermal decomposition of methanesulphonyl azide in methyl benzoate and in benzotrifluoride 36>. These results will be discussed in detail in the section on the properties of sulphonyl nitrenes and singlet and triplet behaviour. A sulphonyl nitrene-iron complex has recently been isolated 37> and more on this species will be reported soon. [Pg.16]

Intramolecular radical arylations are found to work quite well, however, e.g. the Pschorr reaction this involves the thermal decomposition of diazonium salts, e.g. (112), in the presence of copper powder as catalyst, and is used in the synthesis of phenathrenes such... [Pg.334]

Rail tanks of 86% aqueous solutions or slurries of the salt exploded, apparently dining pump-transfer operations [1]. The course and mechanism or thermal decomposition has been investigated. Traces of rust or copper powder catalyse and accelerate the decomposition, so corrosion prevention is an important aspect of safety measures [2], It is of higher thermal stability than the chlorate salt, or the nitrite, which decomposes at ambient temperature [3],... [Pg.203]

Thermal decomposition under hydrogen of a series of pentacyanocobaltate complexes (CN-, N02-, NO- or N3-ligands) revealed that the latter complex is the most exothermic by far. Presence of iron powder suppresses hydrogen cyanide formation. [Pg.592]

Action of chlorine trifluoride causes incandescence [1]. Manganese dioxide catalytically decomposes powerful oxidising agents, often violently. Dropped into cone, hydrogen peroxide, the powdered oxide may cause explosion [2], Either the massive or the powdered oxide explosively decomposes 92% peroxomonosulfuric acid [3], and mixtures with chlorates ( oxygen mixture , heated to generate the gas) may react with explosive violence [4], Cuban pyrolusite can be used in place of potassium dichromate to promote thermal decomposition of potassium chlorate in match-head formulations [5],... [Pg.1769]

Also presented were data on carbon-coating of graphite powder using a propylene gas thermal decomposition processes. High weight percent amorphous carbon-coatings are possible with this method, and the process appears uniquely suited to materials that are reductively stable to 700°C. The coated materials work better in the 30% PC electrolyte solutions, thus showing better resistance to solvent co-intercalation problems versus uncoated types. [Pg.385]

Catalysts. Cupric oxide was prepared by thermal decomposition of reagent grade copper nitrate (Wako Pure Chem.Inc.Ltd.) at 400°C in air for 4 hrs. Magnesium oxide was commercially available reagent grade powder (Kanto Chemical Co.Ltd.). The oxides powders were pressed into tablets and crushed and 24-42 mesh granules were used as catalysts. [Pg.165]


See other pages where Thermal decomposition powder is mentioned: [Pg.182]    [Pg.260]    [Pg.9]    [Pg.451]    [Pg.215]    [Pg.428]    [Pg.366]    [Pg.208]    [Pg.466]    [Pg.106]    [Pg.365]    [Pg.2311]    [Pg.85]    [Pg.106]    [Pg.55]    [Pg.10]    [Pg.72]    [Pg.371]    [Pg.372]    [Pg.438]    [Pg.328]    [Pg.535]    [Pg.106]    [Pg.201]    [Pg.235]    [Pg.199]    [Pg.969]    [Pg.1317]    [Pg.24]   


SEARCH



Powder decomposition

Thermal decomposition

© 2024 chempedia.info