Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperatures silicon nitrides

In fact, this reaction causes finely ground Si3N4 powder to give off an odor of ammonia in moist air at room temperature. Silicon nitride is also thermodynamically unstable in air, reacting spontaneously with oxygen ... [Pg.911]

As noted, the oxidation resistance of silicon nitride ceramics depends on the type and concentration of the sintering aids. In materials designed for high temperature appHcations the specific weight gain resulting from oxidation upon a 500-h air exposure at 1200°C and 1350°C is about 1—2 g/m and 2—4 g/m, respectively. The kinetics of the oxidation process have been iavestigated (63,64) as has the corrosion resistance (65). Corrosion resistance is also dependent on material formulation and density. [Pg.323]

Silicon Nitride. SiUcon nitride is manufactured either as a powder as a precursor for the production of hot-pressed parts or as self-bonded, reaction-sintered, siUcon nitride parts. a-SiUcon nitride, used in the manufacture of Si N intended for hot pressing, can be obtained by nitriding Si powder in an atmosphere of H2, N2, and NH. Reaction conditions, eg, temperature, time, and atmosphere, have to be controlled closely. Special additions, such as Fe202 to the precursor material, act as catalysts for the formation of predorninately a-Si N. SiUcon nitride is ball-milled to a very fine powder and is purified by acid leaching. SiUcon nitride can be hot pressed to full density by adding 1—5% MgO. [Pg.55]

Creep Resistsince. Studies on creep resistance of particulate reinforced composites seem to indicate that such composites are less creep resistant than are monolithic matrices. Silicon nitride reinforced with 40 vol % TiN has been found to have a higher creep rate and a reduced creep strength compared to that of unreinforced silicon nitride. Further reduction in properties have been observed with an increase in the volume fraction of particles and a decrease in the particle size (20). Similar results have been found for SiC particulate reinforced silicon nitride (64). Poor creep behavior has been attributed to the presence of glassy phases in the composite, and removal of these from the microstmcture may improve the high temperature mechanical properties (64). [Pg.58]

The covalently-bonded silicon carbide, silicon nitride, and sialons (alloys of Si3N4 and AI2O3) seem to be the best bet for high-temperature structural use. Their creep resistance... [Pg.206]

The very hard structural ceramics silicon carbide, SiC, and silicon nitride, Si3N4 (used for load-bearing components such as high-temperature bearings and engine... [Pg.169]

When you pour boiling water into a cold bottle and discover that the bottom drops out with a smart pop, you have re-invented the standard test for thermal shock resistance. Fracture caused by sudden changes in temperature is a problem with ceramics. But while some (like ordinary glass) will only take a temperature "shock" of 80°C before they break, others (like silicon nitride) will stand a sudden change of 500°C, and this is enough to fit them for use in environments as violent as an internal combustion engine. [Pg.182]

The high temperature tx-fi transformation of shock-activated silicon nitride powder has been investigated at temperatures of 1600 and 1700°C [84B01]. [Pg.172]

Fig. 7.8. High temperature conversion of a-silicon nitride with an MgO additive to the p-pha.se is thought to be a consequence of dissolution of the a phase in a magnesium silicate with subsequent recrystallization from the melt. Enhanced dissolution rate should then strongly influence a. p conversion [84B01]. Fig. 7.8. High temperature conversion of a-silicon nitride with an MgO additive to the p-pha.se is thought to be a consequence of dissolution of the a phase in a magnesium silicate with subsequent recrystallization from the melt. Enhanced dissolution rate should then strongly influence a. p conversion [84B01].
Fig. 7.9. Measurements of the degree of conversion of ct p silicon nitride at a fixed time and various temperatures are thought to show the strong influence of shock modification on the high temperature dissolution [84B01]. Fig. 7.9. Measurements of the degree of conversion of ct p silicon nitride at a fixed time and various temperatures are thought to show the strong influence of shock modification on the high temperature dissolution [84B01].
As a future alternative to glassed steel there is ceramics-coated steel which is resistant to abrasion, corrosion and high temperatures. The base metal is coated with silicon nitride formed in situ. Silicon nitride has resistance to both acid and alkali and it is durable at temperatures up to 1 000°C, suggesting a promising future coating in aggressive operating environments. [Pg.899]

Chemical Resistance. Silicon nitride is resistant to oxidation up to 1350°C. It is resistant to most reagents at room temperature. [Pg.280]

Reactions (1), (2) and (3), which all use ammonia, have a tendency to deposit silicon nitride with a high ratio of included hydrogen, especially at the lower temperatures and if a plasma is used. This tendency is often detrimental but it can be remedied, at least to some degree, by using nitrogen instead of ammonia ... [Pg.282]

Hussain, T., and Ibberson, V., Synthesis of Ultrafme Silicon Nitride in an RF Plasma Reactor, in Advances in Low-Temperature Plasma Chemistry, Technology, Applications, 2 71-77, (H. Boenig, ed), Technomic, Lancaster (1984)... [Pg.484]

Figure 2.37 Temperature profiles across the membrane covering the reaction channel of the T micro reactor for a silicon and a silicon nitride membrane and two different heater designs, as discussed by Quiram et al. [128]. Figure 2.37 Temperature profiles across the membrane covering the reaction channel of the T micro reactor for a silicon and a silicon nitride membrane and two different heater designs, as discussed by Quiram et al. [128].
The design of the Pd-membrane reactor was based on the chip design of reactor [R 10]. The membrane is a composite of three layers, silicon nitride, silicon oxide and palladium. The first two layers are perforated and function as structural support for the latter. They serve also for electrical insulation of the Pd film from the integrated temperature-sensing and heater element. The latter is needed to set the temperature as one parameter that determines the hydrogen flow. [Pg.288]

Organometallic polymer precursors offer the potential to manufacture shaped forms of advanced ceramic materials using low temperature processing. Polysilazanes, compounds containing Si-N bonds in the polymer backbone, can be used as precursors to silicon nitride containing ceramic materials. This chapter provides an overview of the general synthetic approaches to polysilazanes with particular emphasis on the synthesis of preceramic polysilazanes. [Pg.124]

In the case of H in low-temperature deposited silicon nitride films, ion beam techniques have again been used to calibrate IR absorption. The IR absorption cross sections most often quoted in the literature for Si—H and N—H bonds in plasma-deposited material are those of Lanford and Rand (1978) who used 15N nuclear reaction to calibrate their IR spectrometry. Later measurements in CVD nitride films, using similar techniques, confirmed these cross sections (Peercy et al., 1979). [Pg.212]

Similar technology is also being used in induction hotplates and radiant heating elements and in the silicon nitride hotplates currently under development and which are characterized by an excellent heat transfer between heat source, sensor and saucepan. Gas hotplates could also be provided with the latest in domestic temperature sensing technology by fitting them with electric temperature control circuitry. [Pg.120]

In the sintering of such materials as silicon nitride, a silica-rich liquid phase is formed which remains in the sintered body as an intra-granular glass, but this phase, while leading to consolidation, can also lead to a deterioration in the high-temperature mechanical properties. [Pg.301]

A cross-sectional schematic of a monolithic gas sensor system featuring a microhotplate is shown in Fig. 2.2. Its fabrication relies on an industrial CMOS-process with subsequent micromachining steps. Diverse thin-film layers, which can be used for electrical insulation and passivation, are available in the CMOS-process. They are denoted dielectric layers and include several silicon-oxide layers such as the thermal field oxide, the contact oxide and the intermetal oxide as well as a silicon-nitride layer that serves as passivation. All these materials exhibit a characteristically low thermal conductivity, so that a membrane, which consists of only the dielectric layers, provides excellent thermal insulation between the bulk-silicon chip and a heated area. The heated area features a resistive heater, a temperature sensor, and the electrodes that contact the deposited sensitive metal oxide. An additional temperature sensor is integrated close to the circuitry on the bulk chip to monitor the overall chip temperature. The membrane is released by etching away the silicon underneath the dielectric layers. Depending on the micromachining procedure, it is possible to leave a silicon island underneath the heated area. Such an island can serve as a heat spreader and also mechanically stabihzes the membrane. The fabrication process will be explained in more detail in Chap 4. [Pg.11]

The main goal of another microhotplate design was the replacement of all CMOS-metal elements within the heated area by materials featuring a better temperature stability. This was accomplished by introducing a novel polysilicon heater layout and a Pt temperature sensor (Sect. 4.3). The Pt-elements had to be passivated for protection and electrical insulation, so that a local deposition of a silicon-nitride passivation through a mask was performed. This silicon-nitride layer also can be varied in its thickness and with regard to its stress characteristics (compressive or tensile). This hotplate allowed for reaching operation temperatures up to 500 °C and it showed a thermal resistance of 7.6 °C/mW. [Pg.108]

Silicon nitride (Si N ), resistant to oxidation, is an excellent coating for metals, as well as an adhesive and abrasive, and it is used in high-temperature crucibles. It has proven useful as heat-resistant substance for the nozzles on rocket engines. [Pg.197]


See other pages where Temperatures silicon nitrides is mentioned: [Pg.779]    [Pg.779]    [Pg.142]    [Pg.214]    [Pg.851]    [Pg.378]    [Pg.379]    [Pg.475]    [Pg.328]    [Pg.137]    [Pg.145]    [Pg.378]    [Pg.393]    [Pg.275]    [Pg.375]    [Pg.97]    [Pg.495]    [Pg.496]    [Pg.36]    [Pg.595]    [Pg.254]    [Pg.142]    [Pg.37]    [Pg.162]    [Pg.8]    [Pg.339]    [Pg.538]    [Pg.291]   
See also in sourсe #XX -- [ Pg.765 ]




SEARCH



High-temperature properties of silicon nitride materials

Nitridation temperature

Silicon nitride

Silicon temperature

© 2024 chempedia.info