Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon nitride forms

As a future alternative to glassed steel there is ceramics-coated steel which is resistant to abrasion, corrosion and high temperatures. The base metal is coated with silicon nitride formed in situ. Silicon nitride has resistance to both acid and alkali and it is durable at temperatures up to 1 000°C, suggesting a promising future coating in aggressive operating environments. [Pg.899]

Figure 7.12 SEM image of products of ferrosilicon combustion in nitrogen, (a) Solidified drop of iron-silicon melt with crystals of silicon nitride and (b) upper half of the same drop with "flowing down" crystals of silicon nitride forming a large crystal (in the background). Figure 7.12 SEM image of products of ferrosilicon combustion in nitrogen, (a) Solidified drop of iron-silicon melt with crystals of silicon nitride and (b) upper half of the same drop with "flowing down" crystals of silicon nitride forming a large crystal (in the background).
Ceramics themselves are sometimes protected in this way. Silicon carbide, SiC, and silicon nitride, Si3N4 both have large negative energies of oxidation (meaning that they oxidise easily). But when they do, the silicon in them turns to Si02 which quickly forms a protective skin and prevents further attack. [Pg.220]

The measures of solid state reactivity to be described include experiments on solid-gas, solid-liquid, and solid-solid chemical reaction, solid-solid structural transitions, and hot pressing-sintering in the solid state. These conditions are achieved in catalytic activity measurements of rutile and zinc oxide, in studies of the dissolution of silicon nitride and rutile, the reaction of lead oxide and zirconia to form lead zirconate, the monoclinic to tetragonal transformation in zirconia, the theta-to-alpha transformation in alumina, and the hot pressing of aluminum nitride and aluminum oxide. [Pg.161]

The starting material and shock-activated powder were mixed with 5-wt% MgO and heated for various periods. At the end of each period the phase content of the samples was determined with x-ray diffraction. In this environment it is thought that the phase is formed by a dissolution-precipitation process as shown in Fig. 7.8. As indicated in Fig. 7.9, the shock-activated silicon nitride displays substantially enhanced dissolution rates that are strongly dependent on shock pressure between 22 and 27 GPa. [Pg.173]

Organometallic polymer precursors offer the potential to manufacture shaped forms of advanced ceramic materials using low temperature processing. Polysilazanes, compounds containing Si-N bonds in the polymer backbone, can be used as precursors to silicon nitride containing ceramic materials. This chapter provides an overview of the general synthetic approaches to polysilazanes with particular emphasis on the synthesis of preceramic polysilazanes. [Pg.124]

Fig. 7 Schematics of a nanometer scale M-A-M diode (not drawn to scale in relative thickness). Top schematic is the cross section of a silicon wafer with a nanometer scale pore etched through a suspended silicon nitride membrane. Middle and bottom schematics show a Au/SAM/Au junction formed in the pore area. (Reprinted with permission from [30])... Fig. 7 Schematics of a nanometer scale M-A-M diode (not drawn to scale in relative thickness). Top schematic is the cross section of a silicon wafer with a nanometer scale pore etched through a suspended silicon nitride membrane. Middle and bottom schematics show a Au/SAM/Au junction formed in the pore area. (Reprinted with permission from [30])...
In the sintering of such materials as silicon nitride, a silica-rich liquid phase is formed which remains in the sintered body as an intra-granular glass, but this phase, while leading to consolidation, can also lead to a deterioration in the high-temperature mechanical properties. [Pg.301]

The rapid developments in the microelectronics industry over the last three decades have motivated extensive studies in thin-film semiconductor materials and their implementation in electronic and optoelectronic devices. Semiconductor devices are made by depositing thin single-crystal layers of semiconductor material on the surface of single-crystal substrates. For instance, a common method of manufacturing an MOS (metal-oxide semiconductor) transistor involves the steps of forming a silicon nitride film on a central portion of a P-type silicon substrate. When the film and substrate lattice parameters differ by more than a trivial amount (1 to 2%), the mismatch can be accommodated by elastic strain in the layer as it grows. This is the basis of strained layer heteroepitaxy. [Pg.317]

Experiments like those described above have been performed to evaluate sodium ion barrier properties of Hitachi PIQ and DuPont PI 2540 polyimide films. Also included in the comparison were silicon nitride coatings plasma deposited in both tensile and compressive stress modes. The structure of the samples is illustrated in Figure 9. N-type, (111) oriented silicon substrates were cleaned and oxidized in dry oxygen ambient at 1100°C to form a 1060 A Si02 film. Wafers intended for polyimide characterization were coated with an organic silane film (gamma glycidal amino propyl trimethoxysilane) to promote adhesion of the polyimide to the oxide surface. The polyimide resins were spun onto the wafers at speeds to produce final... [Pg.161]


See other pages where Silicon nitride forms is mentioned: [Pg.1429]    [Pg.197]    [Pg.164]    [Pg.1429]    [Pg.197]    [Pg.164]    [Pg.359]    [Pg.142]    [Pg.27]    [Pg.198]    [Pg.700]    [Pg.851]    [Pg.269]    [Pg.378]    [Pg.379]    [Pg.31]    [Pg.158]    [Pg.192]    [Pg.462]    [Pg.31]    [Pg.127]    [Pg.137]    [Pg.145]    [Pg.385]    [Pg.393]    [Pg.275]    [Pg.471]    [Pg.375]    [Pg.97]    [Pg.595]    [Pg.142]    [Pg.162]    [Pg.519]    [Pg.538]    [Pg.6]    [Pg.181]    [Pg.249]    [Pg.174]    [Pg.167]    [Pg.117]    [Pg.415]    [Pg.416]   
See also in sourсe #XX -- [ Pg.173 ]




SEARCH



Silicon nitride

© 2024 chempedia.info