Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature recovery process

Some alkylphenols in commercial production have low vapor pressures and/or low thermal decomposition temperatures. Eor these products, the economics of distillation are poor and other recovery processes are used. Crystallisation from a solvent is the most common nondistUlation method for the purification of these alkylphenols. [Pg.64]

In two processes under development as of 1997, the sulfur dioxide stream reacts with reduciag gas over a proprietary catalyst to form elemental sulfur. Both processes have achieved a sulfur recovery of 96% ia a single reactor. Multiple reactor systems are expected to achieve 99+% recovery of the feed sulfur. The direct sulfur recovery process (DSRP), under development at Research Triangle Institute, operates at high temperature and pressure. A similar process being developed at Lawrence Berkeley Laboratory is expected to operate near atmospheric pressure. [Pg.217]

If the viscous bitumen in a tar sand formation can be made mobile by an admixture of either a hydrocarbon diluent or an emulsifying fluid, a relatively low temperature secondary recovery process is possible (emulsion steam drive). If the formation is impermeable, communication problems exist between injection and production weUs. However, it is possible to apply a solution or dilution process along a narrow fracture plane between injection and production weUs. [Pg.356]

Reaction 3 also occurs on cooling since the concentration of SO is very low at roaster temperatures of 950°C and approaches zero at 1000°C. Another important reaction that occurs during roasting is the formation of zinc ferrite, Zn0-Fe2 03 above 650°C (see Ferrites). Zinc ores contain 5—12% iron. Zinc ferrite forms soHd solutions with other spinels, such as Fe0-Fe203, and therefore the zinc—iron compositions formed are of indefinite stoichiometry. Ferritic zinc is difficult to solubilize in hydrometaHurgical leaching but several recovery processes are discussed below. [Pg.399]

Oil recovery from underground reservoirs can be improved by injection of water and pressing of oil to the surface. This secondary oil recovery process is relatively cheap though not always successful. Further, however more expensive, methods are the so-called tertiary oil recovery processes whereby the viscosity of the oil is lowered by mixing with low viscous oils or gas, or by temperature increase due to injection of steam, and where the viscosity of the pressing water layer is increased or the surface tension between water and oil is decreased via addition of surfactants. [Pg.342]

Pseudozan is an exopolysacchaiide produced by a Pseudomonas species. It has high viscosities at low concentrations in formation brines, forms stable solutions over a wide pH range, and is relatively stable at temperatures up to 65° C. The polymer is not shear degradable and has pseudoplastic behavior. The polymer has been proposed for enhanced oil-recovery processes for mobility control [1075]. [Pg.206]

Splash condenser dross residue. The treatment of steel production pollution control sludge generates a zinc-laden residue, called dross. This material, generated from a splash condenser in a high-temperature metal recovery process, is known as a splash condenser dross residue. Because this material contains 50 to 60% zinc, it is often reclaimed, reused, or processed as a valuable recyclable material. Facilities commonly handle this material as a valuable commodity by managing it in a way that is protective of human health and the environment, so U.S. EPA excluded this residue from the definition of solid waste. [Pg.493]

At a given NaCI concentration, an increase in temperature resulted in an increase in interfacial tension. In contrast, for a narrow range of CaCI concentrations, interfacial tensions decreased with increasing temperatures. Changes of the amphiphile at the oil/water interface accounted for some of the experimental observations. Since the extent of oil desaturation is dependent on interfacial tension, the tension data could be used to assess the ability of surfactants to reduce oil saturations in the reservoir for application of surfactants and foams to thermal recovery processes. [Pg.327]

Enhanced oil recovery processes involving displacing fluids such as dense C02 and liquified petroleum gases (LPG) are currently being applied in different parts of the world. At moderately high pressure and reasonable temperatures common in many reservoirs,... [Pg.529]

ZENECA has developed a non-solvent based recovery process as an alternative to solvent extraction for the commercial production of poly(3HB) and poly(3HB-co-3V) by A. eutrophus [94,95], In this process the cells were first exposed to a temperature of 80 °C and subsequently treated with a cocktail of various hydrolytic enzymes consisting of lysozyme, phospholipase, lecithinase, the proteinase alcalase, and others. Most of the cellular components were hy-... [Pg.173]

As for the derivation of Eqs. 122,123 and 124 only the transitions 1—>2 have been counted, these equations do not describe recovery processes, where the transitions 2 —>1 are important as well. These approximations have been made for convenience s sake, but neither imply a limitation for the model, nor are they essential to the results of the calculations. Equation 124 is the well-known formula for the relaxation time of an Eyring process. In Fig. 65 the relaxation time for this plastic shear transition has been plotted versus the stress for two temperature values. It can be observed from this figure that in the limit of low temperatures, the relaxation time changes very abruptly at the shear yield stress Ty = U0/Q.. Below this stress the relaxation time is very long, which corresponds with an approximation of elastic behaviour. [Pg.90]

Reaction of K3Co(CN) with PMMA. A 1.0 g sample of PMMA and 1.0g of the cobalt compound were combined in a standard vessel and pyrolyzed for 2 hrs at 375°C. The tube was removed from the oven and the contents of the tube were observed to be solid (PMMA is liquid at this temperature). The tube was reattached to the vacuum line via the break-seal and opened. Gases were determined by pressure-volume-temperature measurements on the vacuum line and identified by infrared spectroscopy. Recovered were 0.22g of methyl methacrylate and 0.11 g of CO and C02. The tube was then removed from the vacuum line and acetone was added. Filtration gave two fractions, 1.27g of acetone insoluble material and 0.30g of acetone soluble (some soluble material is always lost in the recovery process). The acetone insoluble fraction was then slurried with water, 0.11 g of material was insoluble in water. Infrared analysis of this insoluble material show both C-H and C-0 vibrations and are classified as char based upon infrared spectroscopy. Reactions were also performed at lower temperature, even at 260°C some char is evident in the insoluble fraction. [Pg.180]

Key parameters include temperature, pounds of steam injected (or similar factors for air), and duration and depth of treatment. Steam at a pressure 3.5 to 4.2 kg/cm2 (50 to 60 psi) can heat contaminated soil to 155°C (310°F). The recovery process involves the use of wells to depress the water table and ensure capture of released free-phase NAPLs and vapor-phase hydrocarbons at or near the surface. A conceptual schematic is shown in Figure 10.8. [Pg.305]

Much remains to be learned about the reactions of organosulphur compounds at the elevated temperatures and pressures that can be readily achieved in in situ recovery processes. The use of the natural formation as the chemical reactor permits the attainment of reaction conditions that have previously been out... [Pg.50]

In most recovery processes, scandium oxide is converted to its fluoride salt. The fluoride salt is the end product. The fluoride is converted to metallic scandium by heating with calcium in a tantalum crucible at elevated temperatures. A similar reduction is carried out with most rare earths. The metal is purified by distillation at 1,650 to 1,700°C under high vacuum in a tantalum crucible. [Pg.810]

NFS claims that DeHg technology offers a low-temperature alternative to other mercury recovery processes. They claim that the final waste form generated by processing passes Toxicity Characteristic Leaching Procedure (TCLP) criteria for disposal, and that centrifuge testing has proven that no free liquid mercury remains in the treated product. [Pg.331]

Thermal desorption treatment is generally considered to be an alternative to incineration. Thermal desorption operates at much lower temperatures than incineration and keeps the heating systems independent of the wastes, which minimizes off-gas production. The technology can be used as a waste minimization process, isolating and concentrating waste constituents, or as a product recovery process. Thermal desorption can also be used to separate contaminants in mixed waste streams by removing volatile constituents. [Pg.724]

Mercury Recovery Services, Inc. (MRS), has developed the Mercury Removal/Recovery Process (MRRP) to treat media contaminated with mercury. The ex situ process uses medium-temperature thermal desorption to remove the mercury from contaminated wastes. Process wastes are heated in a two-step process to recover metallic mercury in a 99% pure form. MRS claims MRRP can be applied to soils, activated carbon, mixed waste, catalysts, electrical equipment, batteries, lamps, fluorescent bulbs, mercurous and mercuric compounds, mercury-contaminated waste liquids, and debris. [Pg.779]


See other pages where Temperature recovery process is mentioned: [Pg.295]    [Pg.87]    [Pg.295]    [Pg.87]    [Pg.287]    [Pg.8]    [Pg.495]    [Pg.402]    [Pg.222]    [Pg.457]    [Pg.351]    [Pg.248]    [Pg.266]    [Pg.461]    [Pg.183]    [Pg.161]    [Pg.1257]    [Pg.227]    [Pg.181]    [Pg.216]    [Pg.93]    [Pg.465]    [Pg.43]    [Pg.536]    [Pg.170]    [Pg.14]    [Pg.44]    [Pg.109]    [Pg.51]    [Pg.517]    [Pg.603]    [Pg.630]    [Pg.80]   
See also in sourсe #XX -- [ Pg.244 ]




SEARCH



Process temperatures

Processing temperatures

Recovery process

Recovery processing

© 2024 chempedia.info