Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Temperature properties of plastics

Figure 10.19 shows that low temperature properties of plasticized PVC are always improved by increased amount of plasticizer but they also depend on properties of plasticizer. The regression equations show that there is a linear relationship between low temperature properties and the amount of the plasticizer but relationship for each plasticizer is different. [Pg.201]

For most materials low temperatures present a challenging environment and plastics are no exception. Most polymers at room temperature show their familiar properties of flexibility (a low Young s modulus) and high resistance to cracking, but when the temperature decreases, this can change rapidly and many common polymers become brittle with low failure stresses. Low temperatures can be more harmful to plastics than high temperatures. Catastrophic failures can occur if materials selection does not take account of the low-temperature properties of plastics. [Pg.1113]

Tris(2-ethylhexyl) phosphate shows good compatibiUty with PVC and also imparts good low temperature performance in addition to good fire retardancy. 2-Ethyhexyl diphenyl phosphate has widespread use in dexible PVC appHcations due to its combination of properties of plasticizing efficiency, low temperature performance, migration resistance, and fire retardancy. [Pg.123]

Syndiotactic Polybutadiene. Syndiotactic polybutadiene is a unique material that combines the properties of plastic and mbber. It melts at high (150—220°C) temperatures, depending on the degree of crystallinity in the sample, and it can be molded into thin films that are flexible and have high elongation. The unique feature of this plastic-like material is that it can be blended with natural mbber. 1,4-Polybutadiene and the resulting blends exhibit a compatible formulation that combines the properties of plastic and mbber. [Pg.530]

A large volume usage of S—B—S-based compounds is ia footwear. Canvas footwear, such as sneakers and unit soles, can be made by injection mol ding. Frictional properties resemble those of conventionally vulcanised mbbers and are superior to those of the flexible thermoplastics, such as plasticized poly(vinyl chloride). The products remain flexible under cold conditions because of the good low temperature properties of the polybutadiene segment. [Pg.18]

Polarity. The increase in the polarity of the plasticizer (e.g. existence of polar groups, substitution of aryl groups by alkyl ones) reduces softening efficiency, worsens low-temperature properties of the plasticized polymers, improves solvation, and reduces extractability by aliphatic solvents. [Pg.627]

Fluorinated rubbers, copolymers of hexafluoropropylene and vinylidene-fluorides, have excellent resistance to oils, fuels and lubricants at temperatures up to 200°C. They have better resistance to aliphatic, aromatic and chlorinated hydrocarbons and most mineral acids than other rubbers, but their high cost restricts their engineering applications. Cheremisinoff et al. [54] provide extensive physical and mechanical properties data on engineering plastics. A glossary of terms concerned with fabrication and properties of plastics is given in the last section of this chapter. [Pg.123]

Strength and Stiffness. Thermoplastic materials are viscoelastic which means that their mechanical properties reflect the characteristics of both viscous liquids and elastic solids. Thus when a thermoplastic is stressed it responds by exhibiting viscous flow (which dissipates energy) and by elastic displacement (which stores energy). The properties of viscoelastic materials are time, temperature and strain rate dependent. Nevertheless the conventional stress-strain test is frequently used to describe the (short-term) mechanical properties of plastics. It must be remembered, however, that as described in detail in Chapter 2 the information obtained from such tests may only be used for an initial sorting of materials. It is not suitable, or intended, to provide design data which must usually be obtained from long term tests. [Pg.18]

Thermal Properties. Before considering conventional thermal properties such as conductivity it is appropriate to consi r briefly the effect of temperature on the mechanical properties of plastics. It was stated earlier that the properties of plastics are markedly temperature dependent. This is as a result of their molecular structure. Consider first an amorphous plastic in which the molecular chains have a random configuration. Inside the material, even though it is not possible to view them, we loiow that the molecules are in a state of continual motion. As the material is heated up the molecules receive more energy and there is an increase in their relative movement. This makes the material more flexible. Conversely if the material is cooled down then molecular mobility decreases and the material becomes stiffer. [Pg.30]

It has been shown throughout this chapter that the properties of plastics are dependent on time. In Chapter 1 the dependence of properties on temperature was also highlighted. The latter is more important for plastics than it would be for metals because even modest temperature changes below 100°C can have a significant effect on properties. Clearly it is not reasonable to expect creep curves and other physical property data to be available at all temperatures. If information is available over an appropriate range of temperatures then it may be possible to attempt some type of interpolation. For example, if creep curves are available at 20°C and 60°C whereas the service temperature is 40°C then a linear interpolation would provide acceptable design data. [Pg.116]

As an example, for room-temperature applications most metals can be considered to be truly elastic. When stresses beyond the yield point are permitted in the design, permanent deformation is considered to be a function only of applied load and can be determined directly from the stress-strain diagram. The behavior of most plastics is much more dependent on the time of application of the load, the past history of loading, the current and past temperature cycles, and the environmental conditions. Ignorance of these conditions has resulted in the appearance on the market of plastic products that were improperly designed. Fortunately, product performance has been greatly improved as the amount of technical information on the mechanical properties of plastics has increased in the past half century. More importantly, designers have become more familiar with the behavior of plastics rather than... [Pg.22]

There are several ways in which the impact properties of plastics can be improved if the material selected does not have sufficient impact strength. One method is by altering the composition of the material so that it is no longer a glassy plastic at the operating temperature of the product (Chapter 6). In the case of PVC this is done by the addition of an impact modifier which can be a compatible plastic such as an acrylic or a nitrile rubber. The addition of such a material lowers the glass transition temperature and the material becomes a rubbery viscoelastic plastic with much improved impact properties. This is one of the methods in which PVC materials are made to exhibit superior impact properties. [Pg.92]

Plastics have found numerous uses in specialty areas such as hypersonic atmospheric flight and chemical propulsion exhaust systems. The particular plastic employed in these applications is based on the inherent properties of the plastics or the ability to combine it with another component material to obtain a balance of properties uncommon to either component. Some of the compositions and important properties of plastics are given in Tables 2-9 and 2-10 that have been developed over the years for use in flight vehicles and propulsion systems that are dependent upon chemical, mechanical, electrical, nuclear, and solar means for accelerating the working fluid by high temperatures. [Pg.118]

A number of areas in which plastics are used in electrical and electronic design have been covered there are many more. Examples include fiber optics, computer hardware and software, radomes for radar transmitters, sound transmitters, and appliances. Reviewed were the basic use and behavior for plastics as an insulator or as a dielectric material and applying design parameters. The effect of field intensity, frequency, environmental effects, temperature, and time were reviewed as part of the design process. Several special applications for plastics based on intrinsic properties of plastics materials were also reviewed. [Pg.229]

Figure 5-6 and Tables 5-3 to 5-5 provide an introductory guide to the different thermal properties of plastics. Heat resistance properties of plastics retaining 50% of properties obtainable at room temperature with plastic exposure and testing at elevated temperatures are shown in Fig. 5-6 for the general family or group type. [Pg.319]


See other pages where Temperature properties of plastics is mentioned: [Pg.81]    [Pg.303]    [Pg.322]    [Pg.412]    [Pg.430]    [Pg.449]    [Pg.528]    [Pg.542]    [Pg.48]    [Pg.40]    [Pg.81]    [Pg.303]    [Pg.322]    [Pg.412]    [Pg.430]    [Pg.449]    [Pg.528]    [Pg.542]    [Pg.48]    [Pg.40]    [Pg.152]    [Pg.189]    [Pg.504]    [Pg.326]    [Pg.74]    [Pg.41]    [Pg.542]    [Pg.168]    [Pg.51]    [Pg.107]    [Pg.338]    [Pg.788]    [Pg.261]    [Pg.190]    [Pg.39]    [Pg.189]    [Pg.9]    [Pg.14]    [Pg.326]    [Pg.122]    [Pg.123]    [Pg.152]   
See also in sourсe #XX -- [ Pg.528 ]




SEARCH



Properties, of plastics

© 2024 chempedia.info