Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sympathetic nervous system blood pressure effects

Cholinesterase inhibitors have less marked effects on vascular smooth muscle and on blood pressure than direct-acting muscarinic agonists. This is because indirect-acting drugs can modify the tone of only those vessels that are innervated by cholinergic nerves and because the net effects on vascular tone may reflect activation of both the parasympathetic and sympathetic nervous systems. The cholinomimetic effect at the smooth muscle effector tissue is minimal since few vascular beds receive cholinergic innervation. Activation of sympathetic ganglia may increase vascular resistance. [Pg.142]

Cardiovascular System Desflurane lowers blood pressure—primarily by decreasing systemic vascular resistance—and has a modest negative inotropic effect. Thus, cardiac output is preserved, as is perfusion of major organ beds (e.g., splanchnic, renal, cerebral, and coronary). Marked increases in heart rate often occur during induction of desflurane anesthesia and with abrupt increases in the delivered concentration of desflurane this results from desflurane-induced stimulation of the sympathetic nervous system. The hypotensive effects of desflurane do not wane with increasing duration of administration. [Pg.236]

Carbon dioxide is a rapid, potent stimulus to ventilation. Inhalation of 10% CO can produce minute volumes of 75 L/min in normal individuals. Carbon dioxide acts at multiple sites to stimulate ventilation. Elevated Pco causes bronchodilation, whereas hypocarbia causes constriction of airway smooth muscle these responses may play a role in matching pulmonary ventilation and perfusion. Circulatory effects of CO result from the combination of direct local effects and centrally mediated effects on the autonomic nervous system. The direct effects are diminished contractility of the heart and vascular smooth muscle (vasodilation). The indirect effects result from the capacity of CO to activate the sympathetic nervous system these indirect effects generally oppose the local effects ofCO. Thus, the balance of opposing local and sympathetic effects determines the total circulatory response to CO. The net effect of CO inhalation is an increase in cardiac output, heart rate, and blood pressure. In blood vessels, however, the direct vasodilating actions of carbon dioxide appear more important, and total peripheral resistance decreases when the Pco is increased CO also is a potent coronary vasodilator. Cardiac arrhythmias associated with increased Pco are due to the release of catecholamines. [Pg.258]

Antidepressants Several antidepressant agents may increase blood pressure by activating the sympathetic nervous system (SNS). These effects may be more pronounced in older patients and dose dependent... [Pg.225]

Nitrous oxide produces respiratory depression (38,39). It has been shown to produce a direct myocardial depressant effect in dogs (40) and in humans breathing a 40% N2O/60% oxygen mixture (41) however, this may be offset by the activation of the sympathetic nervous system (42). The combination of nitrous oxide and opioids can produce decreases in myocardial contractiHty, heart rate, and blood pressure (43). [Pg.408]

Sympathomimetic. A drug that produces effects similar to stimulating the sympathetic nervous system, that is, increased blood pressure, dilated bronchi, and mydriasis. [Pg.455]

Because of its motor, i.e., activating effect on vascular smooth muscle and its inhibitory effect on intestinal smooth muscle, the sympathetic nervous system has been cast into the role of the component of the nervous system that executes control of visceral function in times of physical emergency for the organism. The phrase fight or flight has been often used to describe the circumstances in which the adrenergic transmitters of the sympathetic system are dominant over the cholinergic parasympathetic system. This concept is perhaps oversimplified but it has the utility of a first approximation of how the two components of the ANS interact in the periphery. Sensory inputs which lead to increased blood pressure, for example, activate the sympathetic pathways. [Pg.198]

Vasodilation and decreased arterial pressure are also detected centrally. The sympathetic nervous system is activated to increase blood pressure, which in turn increases portal pressure. Unchecked, these combined effects enable the cycle of portal pressure and ascites to continue, setting up a self-perpetuating loop of ascites formation. [Pg.326]

Loss of plasma volume leads to a decrease in MAP. Baroreceptors located in the aortic and carotid sinuses detect this fall in MAP and elicit reflex responses that include an increase in the overall activity of the sympathetic nervous system. Sympathetic stimulation of the heart and blood vessels leads to an increase in cardiac output (CO) and increased total peripheral resistance (TPR). These adjustments, which increase MAP, are responsible for the short-term regulation of blood pressure. Although increases in CO and TPR are effective in temporary maintenance of MAP and blood flow to the vital organs, these activities cannot persist indefinitely. Ultimately, plasma volume must be returned to normal (see Table 19.1). [Pg.332]

Adrenaline is the main hormone released from the adrenal medulla. The glandular cells in this structure correspond to the second, postganglionic neuron of the sympathetic nervous system. Furthermore, adrenaline can be found in chromaffin cells in various tissues. For the better understanding of the function of noradrenaline it is important to realize that this substance, as a neuronal transmitter, affects only the innervated target structure, that is it acts mainly locally. Among these effects are the activation of the musculus dilatator to widen the pupillae in response to a reduced light intensity, an increase in heart rate as a response to a blood pressure drop due to a reduction of the peripheral resistance or constriction... [Pg.302]

The vasodilators decrease total peripheral resistance and thus correct the hemodynamic abnormality that is responsible for the elevated blood pressure in primary hypertension. In addition, because they act directly on vascular smooth muscle, the vasodilators are effective in lowering blood pressure, regardless of the etiology of the hypertension. Unlike many other antihypertensive agents, the vasodilators do not inhibit the activity of the sympathetic nervous system therefore, orthostatic hypotension and impotence are not problems. Additionally, most vasodilators relax arterial smooth muscle to a greater extent than venous smooth muscle, thereby further minimizing postural hypotension. [Pg.226]

Hydralazine is generally reserved for moderately hypertensive ambulatory patients whose blood pressure is not well controlled either by diuretics or by drugs that interfere with the sympathetic nervous system. It is almost always administered in combination with a diuretic (to prevent Na+ retention) and a p-blocker, such as propranolol (to attenuate the effects of reflex cardiac stimulation and hyperreninemia). The triple combination of a diuretic, -blocker, and hydralazine constitutes a unique hemodynamic approach to the treatment of hypertension, since three of the chief determinants of blood pressure are affected cardiac output (p-blocker). [Pg.228]

Unlike isoflurane, desflurane may stimulate the sympathetic nervous system at concentrations above 1 MAC. Sudden and unexpected increases in arterial blood pressure and heart rate have been reported in some patients, accompanied by increases in plasma catecholamine and vasopressin concentrations and increased plasma renin activity. These pressor effects may increase morbidity or mortality in susceptible patients. The mechanism of sympathetic activation is unclear but does not appear to be baroreceptor-mediated. Clonidine, esmolol, fentanyl and propofol partially block the response but lignocaine (lignocaine) is ineffective. [Pg.62]

Autonomic and hormonal control of cardiovascular function. Note that two feedback loops are present the autonomic nervous system loop and the hormonal loop. The sympathetic nervous system directly influences four major variables peripheral vascular resistance, heart rate, force, and venous tone. It also directly modulates renin production (not shown). The parasympathetic nervous system directly influences heart rate. In addition to its role in stimulating aldosterone secretion, angiotensin II directly increases peripheral vascular resistance and facilitates sympathetic effects (not shown). The net feedback effect of each loop is to compensate for changes in arterial blood pressure. Thus, decreased blood pressure due to blood loss would evoke increased sympathetic outflow and renin release. Conversely, elevated pressure due to the administration of a vasoconstrictor drug would cause reduced sympathetic outflow, reduced renin release, and increased parasympathetic (vagal) outflow. [Pg.122]

N.A. Rauvolfia serpentina (L.) Benth. Indole alkaloids, reserpine, rescinnamine, ajmaline, yohimbine.99 Regulate hearbeat, treat high blood pressure and anxiety. Sedative and depressant effect on sympathetic nervous system. [Pg.291]

Ephedrine occurs in white, rosette, or needle crystals, or as an unctuous mass. It is soluble in water, alcohol, chloroform, ether, and in liquid petrolatum, the latter solution being turbid if the ephedrine is not dry. Ephedrine melts between 34 and 40°C, depending upon the amount of water it contains it contains not more than 0.1% of ash its solutions are alkaline to litmus it readily forms salts with acids and it responds to the usual tests for alkaloids. Ephedrine excites the sympathetic nervous system, depressing smooth and cardiac muscle action, and produces effects similar to those of epinephrine. It produces a rather long-lasting rise of blood pressure and mydriasis and diminishes hyperemia. The alkaloid may be used in 0.5 to 2% oil spray. [Pg.313]

When injected intravenously, kinins produce a rapid fall in blood pressure that is due to their arteriolar vasodilator action. The hypotensive response to bradykinin is of very brief duration. Intravenous infusions of the peptide fail to produce a sustained decrease in blood pressure prolonged hypotension can only be produced by progressively increasing the rate of infusion. The rapid reversibility of the hypotensive response to kinins is due primarily to reflex increases in heart rate, myocardial contractility, and cardiac output. In some species, bradykinin produces a biphasic change in blood pressure—an initial hypotensive response followed by an increase above the preinjection level. The increase in blood pressure may be due to a reflex activation of the sympathetic nervous system, but under some conditions, bradykinin can directly release catecholamines from the adrenal medulla and stimulate sympathetic ganglia. Bradykinin also increases blood pressure when injected into the central nervous system, but the physiologic significance of this effect is not clear, since it is unlikely that kinins cross the blood-brain barrier. [Pg.419]


See other pages where Sympathetic nervous system blood pressure effects is mentioned: [Pg.243]    [Pg.140]    [Pg.140]    [Pg.273]    [Pg.274]    [Pg.1066]    [Pg.451]    [Pg.334]    [Pg.162]    [Pg.171]    [Pg.330]    [Pg.390]    [Pg.262]    [Pg.327]    [Pg.327]    [Pg.229]    [Pg.195]    [Pg.273]    [Pg.202]    [Pg.208]    [Pg.381]    [Pg.240]    [Pg.242]    [Pg.7]    [Pg.11]    [Pg.27]    [Pg.289]    [Pg.201]    [Pg.205]    [Pg.212]    [Pg.213]   
See also in sourсe #XX -- [ Pg.334 ]




SEARCH



Blood pressure

Blood pressure effect

Effect blood

Pressure systems

Pressurizing system

Sympathetic

Sympathetic nervous

Sympathetic nervous system

Sympathetic system

System pressure, effect

Systemic blood

© 2024 chempedia.info