Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Peripheral resistance

Moreover, digitahs has indirect effects on the circulation, which in normal hearts results in a small increase in arterial pressure, peripheral resistance, and cardiac output (114). The effects of digitahs on the circulation of an individual experiencing congestive heart failure are much more dramatic, however. The increased cardiac output, for example, increases renal blood flow which can reheve in part the edema of CHF associated with salt and water retention (114). [Pg.129]

It is well accepted that hypertension is a multifactorial disease. Only about 10% of the hypertensive patients have secondary hypertension for which causes, ie, partial coarctation of the renal artery, pheochromacytoma, aldosteronism, hormonal imbalances, etc, are known. The hallmark of hypertension is an abnormally elevated total peripheral resistance. In most patients hypertension produces no serious symptoms particularly in the early phase of the disease. This is why hypertension is called a silent killer. However, prolonged suffering of high arterial blood pressure leads to end organ damage, causing stroke, myocardial infarction, and heart failure, etc. Adequate treatment of hypertension has been proven to decrease the incidence of cardiovascular morbidity and mortaUty and therefore prolong life (176—183). [Pg.132]

ACE inhibitors lower the elevated blood pressure in humans with a concomitant decrease in total peripheral resistance. Cardiac output is increased or unchanged heart rate is unchanged urinary sodium excretion is unchanged and potassium excretion is decreased. ACE inhibitors promote reduction of left ventricular hypertrophy. [Pg.140]

P-Adrenoceptor Blockers. There is no satisfactory mechanism to explain the antihypertensive activity of P-adrenoceptor blockers (see Table 1) in humans particularly after chronic treatment (228,231—233). Reductions in heart rate correlate well with decreases in blood pressure and this may be an important mechanism. Other proposed mechanisms include reduction in PRA, reduction in cardiac output, and a central action. However, pindolol produces an antihypertensive effect without lowering PRA. In long-term treatment, the cardiac output is restored despite the decrease in arterial blood pressure and total peripheral resistance. Atenolol (Table 1), which does not penetrate into the brain is an efficacious antihypertensive agent. In short-term treatment, the blood flow to most organs (except the brain) is reduced and the total peripheral resistance may increase. [Pg.141]

Calcium channel blockers reduce arterial blood pressure by decreasing calcium influx, resulting in a decrease in intracellular calcium (236,237). The arterial smooth muscle tone decreases, thereby decreasing total peripheral resistance. The increase in vascular resistance in hypertension is found to depend much on calcium influx. Calcium channel blockers reduce blood pressure at rest and during exercise. They decrease the transmembranous calcium influx or entry that lead to a net decrease of intracellular calcium and therefore the vascular tone falls, as does blood pressure. [Pg.141]

The principal mechanism of the hypotensive effect of diuretics (qv) is salt and fluid depletion, leading to reduction in blood volume (200,240). Acute effects lead to a decrease in cardiac output and an increase in total peripheral resistance. However, during chronic adrninistration, cardiac output and blood volume return toward normal and total peripheral resistance decreases to below pretreatment values. As a result, the blood pressure falls. The usual reduction in blood volume is about 5%. A certain degree of sustained blood volume contraction has to occur before the blood pressure decreases. The usual decrease in blood pressure achieved using a diuretic is about 20/10 mm Hg (2.7/1.3 kPa) (systoHc/diastoHc pressures. [Pg.142]

Methyldopa. Methyldopa reduces arterial blood pressure by decreasing adrenergic outflow and decreasing total peripheral resistance and heart rate having no change in cardiac output. Blood flow to the kidneys is not changed and that to the heart is increased. It causes regression of myocardial hypertrophy. [Pg.142]

Glonidine. Clonidine decreases blood pressure, heart rate, cardiac output, stroke volume, and total peripheral resistance. It activates central a2 adrenoceptors ia the brainstem vasomotor center and produces a prolonged hypotensive response. Clonidine, most efficaciously used concomitantly with a diuretic in long-term treatment, decreases renin and aldosterone secretion. [Pg.143]

Indapamide has been shown to possess diuretic and iadependent vasodilatory effects (16). It lowers the elevated blood pressure and reduces total peripheral resistance without an iacrease ia heart rate. ladapamide antagoni2es the vasocoastrictiag effects of the catecholamiaes and angiotensin II (16), a property not shared by other thia2ide-type diuretics. Tripamide is also reported to have direct vasodilatory effects (13). [Pg.205]

Relatively selective stimulation of Pi-adrenergic receptors can be achieved with dobutamine. This is a racemic drug of which both isomers activate the Pi-receptor, and in addition the (-) isomer activates ( -receptors whereas the (+) isomer activates p2-receptors the simultaneous activation of ai- and p2-receptors results in no major net effect on peripheral resistance, and thus the overall cardiovascular effects are mediated by Pi-stimulation leading to increases in cardiac contractility and output. Dobutamine is used for the short-term treatment of acute cardiac failure and for diagnostic purposes in stress echocardiography. [Pg.49]

Although blood pressure control follows Ohm s law and seems to be simple, it underlies a complex circuit of interrelated systems. Hence, numerous physiologic systems that have pleiotropic effects and interact in complex fashion have been found to modulate blood pressure. Because of their number and complexity it is beyond the scope of the current account to cover all mechanisms and feedback circuits involved in blood pressure control. Rather, an overview of the clinically most relevant ones is presented. These systems include the heart, the blood vessels, the extracellular volume, the kidneys, the nervous system, a variety of humoral factors, and molecular events at the cellular level. They are intertwined to maintain adequate tissue perfusion and nutrition. Normal blood pressure control can be related to cardiac output and the total peripheral resistance. The stroke volume and the heart rate determine cardiac output. Each cycle of cardiac contraction propels a bolus of about 70 ml blood into the systemic arterial system. As one example of the interaction of these multiple systems, the stroke volume is dependent in part on intravascular volume regulated by the kidneys as well as on myocardial contractility. The latter is, in turn, a complex function involving sympathetic and parasympathetic control of heart rate intrinsic activity of the cardiac conduction system complex membrane transport and cellular events requiring influx of calcium, which lead to myocardial fibre shortening and relaxation and affects the humoral substances (e.g., catecholamines) in stimulation heart rate and myocardial fibre tension. [Pg.273]

The regulation of the total peripheral resistance also involves the complex interactions of several mechanisms. These include baroreflexes and sympathetic nervous system activity response to neurohumoral substances and endothelial factors myogenic adjustments at the cellular level, some mediated by ion channels and events at the cellular membrane and intercellular events mediated by receptors and mechanisms for signal transduction. As examples of some of these mechanisms, there are two major neural reflex arcs (Fig. 1). Baroreflexes are derived from high-pressure barorecep-tors in the aortic arch and carotid sinus and low-pressure cardiopulmonary baroreceptors in ventricles and atria. These receptors respond to stretch (high pressure) or... [Pg.273]

Several nonpeptidic, orally active vasopressin receptor antagonists have been developed. The dual V1A/V2R antagonist conivaptan is used in the treatment of hyponatraemia and could also become useful for diseases such as congestive heart failure, in which increased peripheral resistance and dilutional hyponatremia both are present [4]. Side effects of conivaptan include headache, injection site reactions, vomiting, diarrhoea, constipation and thirst. [Pg.1277]

Cardiovascular-peripheral vasodilation,decreased peripheral resistance, inhibition of baroreceptors (pressure receptors located in the aortic arch and carotid sinus that regulate blood pressure), orthostatic hypotension and fainting... [Pg.170]

The adrenergic drugs are useful in improving hemodynamic status by improving myocardial contractility and increasing heart rate, which results in increased cardiac output. Peripheral resistance is increased by vasoconstriction. In cardiogenic shock or advanced shock associated with low cardiac output, die adrener-... [Pg.204]

The pathophysiology of primary hypertension is heterogeneous, but ultimately exerts its effects through the two primary determinants of blood pressure cardiac output and peripheral resistance. [Pg.9]

Elevated peripheral arterial resistance is a hallmark of primary hypertension. The increase in peripheral resistance typically observed may be due to a reduction in the arterial lumen size as a result of vascular remodeling. This remodeling, or change in vascular tone, may be modulated by various endothelium-derived vasoactive substances, growth factors, and cytokines. This increase in arterial stiffness or reduced compliance results in the observed increase in systolic blood pressure.9... [Pg.14]

P-blocker therapy was ineffective in preventing coronary heart disease, cardiovascular mortality, and all-cause mortality when compared to diuretics for elderly patients (60 years of age or greater) treated for primary hypertension. Clearly, the effects of P-blockers on blood pressure are complex and difficult to ascribe to one or two mechanisms. Rather, the varied effects of negative chronotropic and inotropic properties along with reduced renin levels (Fig. 2-3) appear to result in an overall reduction in cardiac output and/or reduction in peripheral resistance. [Pg.23]

National High Blood Pressure Education Program noninsulin-dependent diabetes mellitus non-steroidal anti-inflammatory drug peripheral resistance... [Pg.31]

Peripheral resistance The sum of resistance to blood flow offered by systemic blood vessels. [Pg.1573]

Relatively few data are available on the response of ANP to endotoxemia or septic shock. In an ovine model, a 13-fold increase in blood ANP concentration has been found 2 hours after endotoxin administration in a dose of 1.5 pg/kg body weight (LI7). The ANP level remained elevated during the first 6 hours and was associated with marked diuresis and natriuresis and with decreased cardiac output and increased peripheral resistence (LI7). In human studies, a significantly higher ANP blood level was observed in ARDS (E4) and in patients with acute respiratory failure associated with sepsis (M30). In a longitudinal study, we found that plasma ANP levels were increased in patients with sepsis, but the ANP levels showed no relation to the severity of disease or to the presence of shock (B8). [Pg.99]

Explain how the autonomic nervous system alters cardiac output, total peripheral resistance, and therefore mean arterial pressure... [Pg.193]

Mean arterial pressure = cardiac output x total peripheral resistance... [Pg.202]

Total peripheral resistance (TPR) is the resistance to blood flow offered by all systemic vessels taken together, especially by the arterioles, which are the primary resistance vessels. Therefore, MAP is regulated by cardiac activity and vascular smooth muscle tone. Any change in CO or TPR causes a change in MAP. The major factors that affect CO, TPR, and therefore MAP, are summarized in Figure 15.3, as well as in Table 15.1. These factors may be organized into several categories and will be discussed as such ... [Pg.202]

Figure 15.3 Factors that affect mean arterial pressure. Mean arterial pressure is determined by cardiac output and total peripheral resistance. Important factors that influence these two variables are summarized in this figure. Figure 15.3 Factors that affect mean arterial pressure. Mean arterial pressure is determined by cardiac output and total peripheral resistance. Important factors that influence these two variables are summarized in this figure.

See other pages where Peripheral resistance is mentioned: [Pg.126]    [Pg.126]    [Pg.129]    [Pg.132]    [Pg.141]    [Pg.142]    [Pg.143]    [Pg.143]    [Pg.9]    [Pg.140]    [Pg.140]    [Pg.322]    [Pg.402]    [Pg.431]    [Pg.149]    [Pg.12]    [Pg.12]    [Pg.12]    [Pg.14]    [Pg.23]    [Pg.26]    [Pg.26]    [Pg.201]    [Pg.202]   


SEARCH



© 2024 chempedia.info