Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Postganglionic neuron

First neuron Preganglionic Second neuron postganglionic... [Pg.109]

Cotransmission is transmission through a single synapse by means of more than one transmitter. For example, to elicit vasoconstriction, postganglionic sympathetic neurones release their classical transmitter noradrenaline (which acts on smooth muscle a-adrenoceptors) as well as ATP (which acts on smooth muscle P2 receptors) and neuropeptide Y (which acts on smooth muscle Yx receptors). [Pg.395]

The neuropeptides are peptides acting as neurotransmitters. Some form families such as the tachykinin family with substance P, neurokinin A and neurokinin B, which consist of 11 or 12 amino acids and possess the common carboxy-terminal sequence Phe-X-Gly-Leu-Met-CONH2. Substance P is a transmitter of primary afferent nociceptive neurones. The opioid peptide family is characterized by the C-terminal sequence Tyr-Gly-Gly-Phe-X. Its numerous members are transmitters in many brain neurones. Neuropeptide Y (NPY), with 36 amino acids, is a transmitter (with noradrenaline and ATP) of postganglionic sympathetic neurones. [Pg.831]

Visceral functions (e.g., cardiac activity, blood flow, digestion, etc.) Peripheral ganglia located outside cerebrospinal axis Preganglionic and postganglionic neurons Nonmyelinated... [Pg.92]

The efferent pathways of the ANS consist of two neurons that transmit impulses from the CNS to the effector tissue. The preganglionic neuron originates in the CNS with its cell body in the lateral horn of the gray matter of the spinal cord or in the brainstem. The axon of this neuron travels to an autonomic ganglion located outside the CNS, where it synapses with a postganglionic neuron. This neuron innervates the effector tissue. [Pg.93]

Synapses between the autonomic postganglionic neuron and effector tissue — the neuroeffector junction — differ greatly from the neuron-to-neuron synapses discussed previously in Chapter 5 (see Table 9.1). The postganglionic fibers in the ANS do not terminate in a single swelling like the synaptic knob, nor do they synapse directly with the cells of a tissue. Instead, the axon terminals branch and contain multiple swellings called varicosities that lie across the surface of the tissue. When the neuron is stimulated, these varicosities release neurotransmitter over a large surface area of the effector tissue. This diffuse release of the neurotransmitter affects many tissue cells simultaneously. Furthermore, cardiac muscle and most smooth muscle have gap junctions between cells. These specialized intercellular communications... [Pg.93]

Finally, the preganglionic neuron may travel to the adrenal medulla and synapse directly with this glandular tissue. The cells of the adrenal medulla have the same embryonic origin as neural tissue and, in fact, function as modified postganglionic neurons. Instead of the release of neurotransmitter directly at the synapse with an effector tissue, the secretory products of the adrenal medulla are picked up by the blood and travel throughout the body to all of the effector tissues of the sympathetic system. [Pg.95]

An important feature of this system, which is quite distinct from the parasympathetic system, is that the postganglionic neurons of the sympathetic... [Pg.95]

Figure 9.1 The autonomic nervous system and its effector organs. The efferent pathways of this system consist of two neurons that transmit impulses from the CNS to the effector tissue, preganglionic neuron (solid line), and postganglionic neuron (dashed line). As illustrated, most tissues receive nervous input from both divisions of the ANS the sympathetic and the parasympathetic. Figure 9.1 The autonomic nervous system and its effector organs. The efferent pathways of this system consist of two neurons that transmit impulses from the CNS to the effector tissue, preganglionic neuron (solid line), and postganglionic neuron (dashed line). As illustrated, most tissues receive nervous input from both divisions of the ANS the sympathetic and the parasympathetic.
The two most common neurotransmitters released by neurons of the ANS are acetylcholine (Ach) and norepinephrine (NE). Several distinguishing features of these neurotransmitters are summarized in Table 9.3. Nerve fibers that release acetylcholine are referred to as cholinergic fibers and include all preganglionic fibers of the ANS — sympathetic and parasympathetic systems all postganglionic fibers of the parasympathetic system and sympathetic postganglionic... [Pg.97]

Site of All preganglionic neurons of Most sympathetic postganglionic neurons Adrenal medulla (80% of... [Pg.98]

Release autonomic nervous system all postganglionic neurons of parasympathetic system some sympatheticpostganglionicneurons innervating sweat glands (alpha motor neurons innervating skeletal muscle)b adrenal medulla (20% of secretion) secretion)... [Pg.98]

As previously mentioned, the cells of the adrenal medulla are considered modified sympathetic postganglionic neurons. Instead of a neurotransmitter, these cells release hormones into the blood. Approximately 20% of the hormonal output of the adrenal medulla is norepinephrine. The remaining 80% is epinephrine (EPI). Unlike true postganglionic neurons in the sympathetic system, the adrenal medulla contains an enzyme that methylates norepinephrine to form epinephrine. The synthesis of epinephrine, also known as adrenalin, is enhanced under conditions of stress. These two hormones released by the adrenal medulla are collectively referred to as the catecholamines. [Pg.99]

Figure 9.2 Autonomic nerve pathways. All preganglionic neurons release acetylcholine (Ach), which binds to nicotinic receptors (N) on the postganglionic neurons. All postganglionic neurons in the parasympathetic system and some sympathetic postganglionic neurons innervating sweat glands release Ach that binds to muscarinic (M) receptors on the cells of the effector tissue. The remaining postganglionic neurons of the sympathetic system release norepinephrine (NE), which binds to alpha (a) or beta (P) receptors on cells of the effector tissue. The cells of the adrenal medulla, which are modified postganglionic neurons in the sympathetic system, release epinephrine (EPI) and NE into the circulation. Figure 9.2 Autonomic nerve pathways. All preganglionic neurons release acetylcholine (Ach), which binds to nicotinic receptors (N) on the postganglionic neurons. All postganglionic neurons in the parasympathetic system and some sympathetic postganglionic neurons innervating sweat glands release Ach that binds to muscarinic (M) receptors on the cells of the effector tissue. The remaining postganglionic neurons of the sympathetic system release norepinephrine (NE), which binds to alpha (a) or beta (P) receptors on cells of the effector tissue. The cells of the adrenal medulla, which are modified postganglionic neurons in the sympathetic system, release epinephrine (EPI) and NE into the circulation.
Compared to a,-receptors, a2-receptors have only moderate distribution on the effector tissues however, they have important presynaptic effects. Alpha-one receptors are found on effector tissue cells at the neuroeffector junction the a2-receptors are found on the varicosities of the postganglionic neuron. Norepinephrine released from this neuron not only binds to the a.j-receptors on the effector tissue to cause some physiological effect but also binds to the a2-receptors on the neuron. Alpha-two receptor stimulation results in presynaptic inhibition" or in a decrease in the release of norepinephrine. In this way, norepinephrine inhibits its own release from the sympathetic postganglionic neuron and controls its own activity. Both ar and a2-receptors have equal affinity for norepinephrine released directly from sympathetic neurons as well as circulating epinephrine released from the adrenal medulla. [Pg.102]

Because duration of activity of the catecholamines is significantly longer than that of neuronally released norepinephrine, the effects on tissues are more prolonged. This difference has to do with the mechanism of inactivation of these substances. Norepinephrine is immediately removed from the neuroeffector synapse by way of reuptake into the postganglionic neuron. This rapid removal limits duration of the effect of this neurotransmitter. In... [Pg.107]

The catecholamines dopamine, norepinephrine and epinephrine are neurotransmitters and/or hormones in the periphery and in the CNS. Norepinephrine is a neurotransmitter in the brain as well as in postganglionic, sympathetic neurons. Dopamine, the precursor of norepinephrine, has biological activity in the periphery, most particularly in the kidney, and serves as a neurotransmitter in several important pathways in the CNS. Epinephrine, formed by the N-methylation of norepinephrine, is a hormone released from the adrenal gland, and it stimulates catecholamine receptors in a variety of organs. Small amounts of epinephrine are also found in the CNS, particularly in the brainstem. [Pg.211]

The postsynaptic receptors on any given neuron receive information from transmitters released from another neuron. Typically, postsynaptic receptors are located on dendrites or cell bodies of neurons, but may also occur on axons or nerve terminals in the latter case, an axoaxonic synaptic relationship may cause increases or decreases in transmitter release. In contrast, autoreceptors are found on certain neurons and respond to transmitter molecules released from the same neuron. Autoreceptors may be widely distributed on the surface of the neuron. At the nerve terminal, they respond to transmitter molecules released into the synaptic cleft on the cell body, they may respond to transmitter molecules released by dendrites. Functionally, most autoreceptors appear to decrease further transmitter release in a kind of negative feedback loop. Autoreceptors have been identified for all the catecholamines, as well as for several other neurotransmitters. a2-adrenergic receptors are often found on noradrenergic nerve terminals of postganglionic sympathetic nerves, as well as on noradrenergic neurons in the CNS [36], and activation of these receptors decreases further norepinephrine release. Dopamine autoreceptors,... [Pg.218]

Muscarinic receptors are present on ganglionic and postganglionic neurons, for both sympathetic and parasympathetic branches. Thus, the effect of systemic scopolamine is hard to predict and is often paradoxical (Brown and Taylor 1996). [Pg.394]

Atropine generally increases heart rate, but it may briefly and mildly decrease it initially, due to Ml receptors on postganglionic parasympathetic neurons. Larger doses of atropine produce greater tachycardia, due to M2 receptors on the sinoatrial node pacemaker cells. There are no changes in blood pressure, but arrhythmias may occur. Scopolamine produces more bradycardia and decreases arterial pressure, whereas atropine has little effect on blood pressure (Vesalainen et al. 1997 Brown and Taylor 1996). [Pg.395]

Whether sympathetic or parasympathetic, all efferent visceromotor nerves are made up of two serially connected neurons. The point of contact (synapse) between the first and second neurons occurs mainly in ganglia therefore, the first neuron is referred to as preganglionic and efferents of the second as postganglionic. [Pg.108]

In the sympathetic part of the peripheral autonomic nervous system the simation is less complicated since only the sympathetically innervated visceral organs have receptors sensitive to the transmitter of the postganglionic sympathetic neuron noradrenaline. However, the noradrenaline sensitive receptors, which all belong to the G-protein coupled receptor superfamily, can be subdivided in at least three subtypes ai-, a - and jSi-adrenoceptors. These receptors are to a similar extent sensitive to adrenaline, a humoral transmitter which is released under sympathetic control from the adrenal medulla. Adrenaline, in contrast to noradrenaline has affinity to a forth type, the /32-adrenoceptor. In general drug interacting with the autonomous nervous system can be subdivided according to their mechanism of action. [Pg.291]


See other pages where Postganglionic neuron is mentioned: [Pg.85]    [Pg.334]    [Pg.85]    [Pg.334]    [Pg.55]    [Pg.853]    [Pg.868]    [Pg.1272]    [Pg.197]    [Pg.101]    [Pg.163]    [Pg.94]    [Pg.95]    [Pg.95]    [Pg.95]    [Pg.97]    [Pg.101]    [Pg.170]    [Pg.500]    [Pg.44]    [Pg.48]    [Pg.59]    [Pg.60]    [Pg.60]    [Pg.27]    [Pg.197]    [Pg.82]    [Pg.289]    [Pg.291]   


SEARCH



© 2024 chempedia.info