Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface reaction, metallization

The silanization reaction has been used for some time to alter the wetting characteristics of glass, metal oxides, and metals [44]. While it is known that trichlorosilanes polymerize in solution, only very recent work has elucidated the mechanism for surface reaction. A novel FTIR approach allowed Tripp and Hair to prove that octadecyl trichlorosilane (OTS) does not react with dry silica. [Pg.395]

As on previous occasions, the reader is reminded that no very extensive coverage of the literature is possible in a textbook such as this one and that the emphasis is primarily on principles and their illustration. Several monographs are available for more detailed information (see General References). Useful reviews are on future directions and anunonia synthesis [2], surface analysis [3], surface mechanisms [4], dynamics of surface reactions [5], single-crystal versus actual catalysts [6], oscillatory kinetics [7], fractals [8], surface electrochemistry [9], particle size effects [10], and supported metals [11, 12]. [Pg.686]

Hydrazine—borane compounds are made by the reaction of sodium borohydride and a hydrazine salt in THF (23,24). The mono-(N2H4 BH ) and di-(N2H4 2BH2) adducts are obtained, depending on the reaction conditions. These compounds have been suggested as rocket fuels (25) and for chemical deposition of nickel—boron alloys on nonmetallic surfaces (see Metallic COATINGS) (26). [Pg.277]

Condensation of metal vapors followed by deposition on cooler surfaces yields metal powders as does decomposition of metal hydrides. Vacuum treatment of metal hydrides gives powders of fine particle size. Reaction of a metal haHde and molten magnesium, known as the KroU process, is used for titanium and zirconium. This results in a sponge-like product. [Pg.182]

Hydrolysis. The surfaces of metal oxides and hydroxides can take up or release or OH ions and become charged. Potentials as high as 100 mV may be sustained ia aqueous solutions. For aqueous solutions this is a function of the pH the zeta potential for the particle is positive if the solution pH is below the particle s isoelectric pH (pH ), and negative if the pH is above pH Isoelectric poiats for metal oxides are presented ia several pubheations (22,23). Reactions of hydroxyl groups at a surface, Q, with acid and base may be written as follows ... [Pg.546]

Multilayers of Diphosphates. One way to find surface reactions that may lead to the formation of SAMs is to look for reactions that result in an insoluble salt. This is the case for phosphate monolayers, based on their highly insoluble salts with tetravalent transition metal ions. In these salts, the phosphates form layer stmctures, one OH group sticking to either side. Thus, replacing the OH with an alkyl chain to form the alkyl phosphonic acid was expected to result in a bilayer stmcture with alkyl chains extending from both sides of the metal phosphate sheet (335). When zirconium (TV) is used the distance between next neighbor alkyl chains is - 0.53 nm, which forces either chain disorder or chain tilt so that VDW attractive interactions can be reestablished. [Pg.543]

Production-Scale Processing. The tritium produced by neutron irradiation of Li must be recovered and purified after target elements are discharged from nuclear reactors. The targets contain tritium and He as direct products of the nuclear reaction, a small amount of He from decay of the tritium and a small amount of other hydrogen isotopes present as surface or metal contaminants. [Pg.15]

Precious Meta.1 Ca.ta.lysts, Precious metals are deposited throughout the TWC-activated coating layer. Rhodium plays an important role ia the reduction of NO, and is combiaed with platinum and/or palladium for the oxidation of HC and CO. Only a small amount of these expensive materials is used (31) (see Platinum-GROUP metals). The metals are dispersed on the high surface area particles as precious metal solutions, and then reduced to small metal crystals by various techniques. Catalytic reactions occur on the precious metal surfaces. Whereas metal within the crystal caimot directly participate ia the catalytic process, it can play a role when surface metal oxides are influenced through strong metal to support reactions (SMSI) (32,33). Some exhaust gas reactions, for instance the oxidation of alkanes, require larger Pt crystals than other reactions, such as the oxidation of CO (34). [Pg.486]

The principal applications of REELS are thin-film growth studies and gas-surface reactions in the few-monolayer regime when chemical state information is required. In its high spatial resolution mode it has been used to detect submicron metal hydride phases and to characterize surface segregation and difRision as a function of grain boundary orientation. REELS is not nearly as commonly used as AES orXPS. [Pg.325]

Alkene hydrogenation occurs on the surface of metal particles which act as a catalyst for the reaction. This usually means that both hydrogens are added to the same face of the alkene syn addition). [Pg.114]

Since the formation of the Grignard compound takes place at the metal surface, a metal oxide layer deactivates the metal, and prevents the reaction from starting. Such an unreactive metal surface can be activated for instance by the addition of small amounts of iodine or bromine. [Pg.143]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

If the PBR is less than unity, the oxide will be non-protective and oxidation will follow a linear rate law, governed by surface reaction kinetics. However, if the PBR is greater than unity, then a protective oxide scale may form and oxidation will follow a reaction rate law governed by the speed of transport of metal or environmental species through the scale. Then the degree of conversion of metal to oxide will be dependent upon the time for which the reaction is allowed to proceed. For a diffusion-controlled process, integration of Pick s First Law of Diffusion with respect to time yields the classic Tammann relationship commonly referred to as the Parabolic Rate Law ... [Pg.965]

The thermodynamic phase stability diagrams appear to be preferred by corrosion scientists and technologists for the evaluation of gas-metal systems where the chemical composition of the gaseous phase consisting of a single gas or mixture of gases has a critical influence on the formation of surface reaction products which, in turn, may either stifle or accelerate the rate of corrosion. Also, they are used to analyse or predict the reason for the sequence of formation of the phases in a multi-layered surface reaction product on a metal or alloy. [Pg.1094]

This closeness of 0 to zero explains the existence of a gas-oversaturated solution area in the polymer melt, when P < Pg, but the entire volume of gas remains in the solution. The degree of oversaturation, particularly upon free foaming (not in flow) can be 2- to 3-fold. In real polymer compositions, there are always solid admixtures, which have poor wetting areas. This reduces the degree of oversaturation at the interface melt-molding tool. Moreover, bubble nuclei can result from fragmentation of gas bubbles in the polymer [16]. Another factor that promotes the formation of bubble nuclei is the presence of localized hot points in the polymer melt they act as nuc-leation centres. Hot points appear either after a chemical reaction in the melt polymer [17], or in overheated areas on the surface of metal equipment [18]. Density of nucleation can be improved via introduction of various agents that reduce tension of the polymer [19]. [Pg.103]

Moreover, a specially active hydrogen species present in a reaction mixture (e.g. atomic hydrogen, protons) (83) or forming during the surface reaction (37) can penetrate into a metal catalyst lattice and become... [Pg.286]

In these boilers, various interrelated, complex surface chemistry reactions may occur at the metal-water interface, which (apart from the development of a desirable protective magnetite film) can lead to the formation of unwanted deposits. These surface reactions are influenced by the specific heat flux, operating temperatures, and the areas and degree of local metal stress resulting within a particular boiler. [Pg.240]

As shown in Fig. 33, the decreasing mechanism of this fluctuation is summarized as follows At a place on the electrode surface where metal dissolution happens to occur, the surface concentration of the metal ions simultaneously increases. Then the dissolved part continues to grow. Consequently, as the concentration gradient of the diffusion layer takes a negative value, the electrochemical potential component contributed by the concentration gradient increases. Here it should be noted that the electrochemical potential is composed of two components one comes from the concentration gradient and the other from the surface concentration. Then from the reaction equilibrium at the electrode surface, the electrochemical potential must be kept constant, so that the surface concentration component acts to compensate for the increment of the concen-... [Pg.270]

After arriving at the film surface, the metal ion Mz + forms an adsorbed complex (MJQ with the aggressive anion X. Then the complex quickly dissociates into the metal ion and aggressive ions in the solution. This is the second and the most important assumption. The reaction mechanism is described as... [Pg.273]

By 19884 it became obvious that the NEMCA effect, this large apparent violation of Faraday s law, is a general phenomenon not limited to a few oxidation reactions on Ag. Of key importance in understanding NEMCA came the observation that NEMCA is accompanied by potential-controlled variation in the catalyst work function.6 Its importance was soon recognized by leading electrochemists, surface scientists and catalysis researchers. Today the NEMCA effect has been studied already for more than 60 catalytic systems and does not seem to be limited to any specific type of catalytic reaction, metal catalyst or solid electrolyte, particularly in view of... [Pg.2]

E. Shustorovich, Energetics of metal-surface reactions Back-of-the-envelope theoretical modelling, Journal of Molecular Catalysis 54, 301-311 (1989). [Pg.430]

T1O2 and Ce02 based supports. The surface of metal crystallites deposited on such supports is decorated with O2 even during catalytic reactions. And this O2 species is A (102 to 105) times less reactive than covalently bonded O. (Chapter 11). [Pg.530]


See other pages where Surface reaction, metallization is mentioned: [Pg.689]    [Pg.915]    [Pg.1783]    [Pg.2222]    [Pg.2703]    [Pg.2926]    [Pg.41]    [Pg.383]    [Pg.392]    [Pg.227]    [Pg.2435]    [Pg.4]    [Pg.1]    [Pg.470]    [Pg.99]    [Pg.120]    [Pg.254]    [Pg.260]    [Pg.267]    [Pg.1136]    [Pg.396]    [Pg.811]    [Pg.882]    [Pg.239]    [Pg.26]    [Pg.947]    [Pg.161]   


SEARCH



A Basic View of Reactions between Additives and Metal Surfaces

Coverage Effects on Reaction and Activation Energies at Metal Surfaces

Metal single crystal surfaces, reactions

Reactions Catalyzed by Metal Surfaces

Reactions with Metal Surfaces

Surface reaction, metallization poly substrate

© 2024 chempedia.info