Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer support preparation

B. Mayr, F. Sinner, and M.R. Buchmeiser, Chiral beta-cyclodextrin-based polymer supports prepared via ring-opening metathesis graft-polymerization,. Chromatogr. A, 907(l-2) 47-56, January 2001. [Pg.39]

A polymer-supported sulfonamide, prepared from an amino acid activated ester and a polystyrene-sulfonamide, is stable to acidic hydrolysis (CF3COOH HBr/ HOAc). It is cleaved by the safety-catch method shown below. ... [Pg.275]

An interesting development of this research is the preparation of polymer-supported FITS reagent from bis(trifluoroacetoxy)iodoperfluoroalkanes and Nafion-H [145]. FITS-Nafion reacts with organic substrates that react to usual FITS reagents, but the products of the perfluoroalkylation reaction can be separated easily from the insoluble resin by filtration [145]... [Pg.969]

Polymer-supported esters are widely used in solid-phase peptide synthesis, and extensive information on this specialized protection is reported annually. Some activated esters that have been used as macrolide precursors and some that have been used in peptide synthesis are also described in this chapter the many activated esters that are used in peptide synthesis are discussed elsewhere. A useful list, with references, of many protected amino acids (e.g., -NH2, COOH, and side-chain-protected compounds) has been compiled/ Some general methods for the preparation of esters are provided at the beginning of this chapter conditions that are unique to a protective group are described with that group/ Some esters that have been used as protective groups are included in Reactivity Chart 6. [Pg.373]

Desyl bromide, DBU, benzene, reflux, 57-95% yield. A polymer-supported version of this ester has been prepared. ... [Pg.395]

A polymer-supported sulfonamide, prepared from an amino acid activated ester... [Pg.448]

The polymer-supported chiral oxazaborolidinone catalyst 5 prepared from valine was found by Ituno and coworkers to be a practical catalyst of the asymmetric Diels-Alder reaction [7] (Scheme 1.12). Of the several cross-linked polymers with a... [Pg.10]

Polymer-supported BINOLs thus prepared were treated with Zr(Ot-Bu)4 to form polymer-supported zirconium 20. In the presence of 20 mol% of various zirconium 20, the model aza Diels-Alder reactions of imine Id with Danishefsky s diene (7a) were performed results from selected examples are shown in Table 5.8. Whereas the 4-t-butylphenyl group resulted in lower enantiomeric excess (ee), higher ee were obtained when 3,5-xylyl, 4-biphenyl, 4-fluorophenyl, and 3-tri-... [Pg.199]

In the next step, the best candidate from the series 2-oxo-4-(9-phenanthryl)-dihy-dropyrimidine 22 was prepared and isolated in enantiomerically pure form, then attached to a macroporous polymer support. To attach the isolated selector to the amino functionalized macroporous polymethacrylate support, a suitable reactive handle had to be introduced into the dihydropyrimidine. We chose to functionalize the methyl group at the C6 carbon atom by a simple bromination to afford (-)-22. Coupling of this compound to the amino functionalized support then gave the desired chiral stationary phase CSP 12 (Scheme 3-6) containing 0.20 mmol g of the selector. [Pg.82]

When the polymer was prepared by the suspension polymerization technique, the product was crosslinked beads of unusually uniform size (see Fig. 16 for SEM picture of the beads) with hydrophobic surface characteristics. This shows that cardanyl acrylate/methacry-late can be used as comonomers-cum-cross-linking agents in vinyl polymerizations. This further gives rise to more opportunities to prepare polymer supports for synthesis particularly for experiments in solid-state peptide synthesis. Polymer supports based on activated acrylates have recently been reported to be useful in supported organic reactions, metal ion separation, etc. [198,199]. Copolymers are expected to give better performance and, hence, coplymers of CA and CM A with methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) were prepared and characterized [196,197]. [Pg.431]

In contrast to phthalocyanines (tetra- or octasubstituted) in which the isoindoline units carry all the same substituents, reports of phthalocyanines with lower symmetry, which have been prepared by using two different phthalonitriles, have rarely appeared. This is due to the problems which are associated with their preparation and separation. For the preparation of unsymmetrical phthalocyanines with two different isoindoline units four methods are known the polymer support route,300 " 303 via enlargement of subphthalocyanines,304 " 308 via reaction ofl,3,3-trichloroisoindoline and isoindolinediimine309,310 and the statistical condensation followed by a separation of the products.111,311 319 Using the first two methods, only one product, formed by three identical and one other isoindoline unit, should be produced. The third method can be used to prepare a linear product with D2h symmetry formed by two identical isoindoline units. For the synthesis of the other type of unsymmetrical phthalocyanine the method of statistical condensation must be chosen. In such a condensation of two phthalonitriles the formation of six different phthalocyanines320 is possible. [Pg.737]

Under certain condition, however, reactions are still preferably conducted in solution. This is the case e.g., for heterogeneous reactions and for conversions, which deliver complex product mixtures. In the latter case, further conversion of this mixture on the solid support is not desirable. In these instances, the combination of solution chemistry with polymer-assisted conversions can be an advantageous solution. Polymer-assisted synthesis in solution employs the polymer matrix either as a scavenger or for polymeric reagents. In both cases the virtues of solution phase and solid supported chemistry are ideally combined allowing for the preparation of pure products by filtration of the reactive resin. If several reactive polymers are used sequentially, multi-step syntheses can be conducted in a polymer-supported manner in solution as well. As a further advantage, many reactive polymers can be recycled for multiple use. [Pg.382]

Amos prepared his polymer-supported reagent in two steps from commercially available polystyrene beads (bromination, then condensation with lithium diphenylphosphide). He found that a useful range of sulphoxides could be reduced effectively, in good yields and in a few hours, to give clean samples of sulphides. [Pg.928]

Polymer-supported reactions are a relatively recent development in synthetic organic chemistry. In an ideal case a reagent is prepared as part of a polymer which is then poured onto a column. The reactant is then passed through the column in a suitable solvent and the product is obtained free of both starting material and other reagents and is simply isolated by evaporation of the solvent. Ideally the polymer should be easily recyclable. [Pg.985]

A novel and versatile method for preparing polymer-supported reactive dienes was recently developed by Smith [26]. PS-DES (polystyrene diethyl-silane) resin 28 treated with trifluoromethanesulfonic acid was converted to a polymer-supported silyl triflate 29 and then functionalized with enolizable a,jS-unsaturated aldehydes and ketones to form silyloxydienes 30 and 31 (Scheme 4.4). These reactive dienes were then trapped with dienophiles and the Diels Alder adducts were electrophilically cleaved with a solution of TFA. [Pg.151]

Heterocyclic compounds are of great interest to the pharmaceutical industry, as they make up most of the known pharmacophores. As a result, a number of libraries of various heterocycles have been prepared using polymer-supported reagents. While an exhaustive list of all the heterocychc cores that have been prepared using PSRs is beyond the scope of this chapter, some selected examples are depicted in Scheme 3. [Pg.135]


See other pages where Polymer support preparation is mentioned: [Pg.387]    [Pg.61]    [Pg.65]    [Pg.90]    [Pg.97]    [Pg.97]    [Pg.27]    [Pg.173]    [Pg.387]    [Pg.61]    [Pg.65]    [Pg.90]    [Pg.97]    [Pg.97]    [Pg.27]    [Pg.173]    [Pg.257]    [Pg.199]    [Pg.35]    [Pg.236]    [Pg.76]    [Pg.178]    [Pg.430]    [Pg.221]    [Pg.928]    [Pg.985]    [Pg.82]    [Pg.111]    [Pg.112]    [Pg.131]    [Pg.132]    [Pg.133]    [Pg.136]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Polymer preparation

Support preparation

© 2024 chempedia.info