Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface reaction kinetics

Sylvester and Pitayagulsarn53,54 considered combined effects of axial dispersion, external diffusion (gas-liquid, liquid-solid), intraparticle diffusion, and the intrinsic kinetics (surface reaction) on the conversion for a first-order irreversible reaction in an isothermal, trickle-bed reactor. They used the procedure developed by Suzuki and Smith,51,52 where the zero, first, and second moments of the reactant concentration in the effluent from a reactor, in response to a pulse introduced, are taken. The equation for the zero moment can be related to the conversion X, in the form... [Pg.128]

The physical chemist is very interested in kinetics—in the mechanisms of chemical reactions, the rates of adsorption, dissolution or evaporation, and generally, in time as a variable. As may be imagined, there is a wide spectrum of rate phenomena and in the sophistication achieved in dealing wifli them. In some cases changes in area or in amounts of phases are involved, as in rates of evaporation, condensation, dissolution, precipitation, flocculation, and adsorption and desorption. In other cases surface composition is changing as with reaction in monolayers. The field of catalysis is focused largely on the study of surface reaction mechanisms. Thus, throughout this book, the kinetic aspects of interfacial phenomena are discussed in concert with the associated thermodynamic properties. [Pg.2]

INS Ion neutralization An inert gas hitting surface is spectroscopy [147] neutralized with the ejection of an Auger electron from a surface atom Spectroscopy of Emitted Ions or Molecules Kinetics of surface reactions chemisorption... [Pg.315]

MBRS Molecular beam spectroscopy [158] A modulated molecular beam hits the surface and the time lag for reaction products is measured Kinetics of surface reactions chemisorption... [Pg.315]

As on previous occasions, the reader is reminded that no very extensive coverage of the literature is possible in a textbook such as this one and that the emphasis is primarily on principles and their illustration. Several monographs are available for more detailed information (see General References). Useful reviews are on future directions and anunonia synthesis [2], surface analysis [3], surface mechanisms [4], dynamics of surface reactions [5], single-crystal versus actual catalysts [6], oscillatory kinetics [7], fractals [8], surface electrochemistry [9], particle size effects [10], and supported metals [11, 12]. [Pg.686]

Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction). Figure XVIII-2 shows how a surface reaction may be followed by STM, in this case the reaction on a Ni(llO) surface O(surface) + H2S(g) = H20(g) + S(surface). Figure XVIII-2a shows the oxygen atom covered surface before any reaction, and Fig. XVIII-2h, the surface after exposure to 3 of H2S during which Ni islands and troughs have formed on which sulfur chemisorbs. The technique is powerful in the wealth of detail provided on the other hand, there is so much detail that it is difficult to relate it to macroscopic observation (such as the kinetics of the reaction).
Weinberg W H 1991 Kinetics of surface reactions Dynamics of Gas-Surface Interactions ed C T Rettner and M N R Ashfold (London Royal Society of Chemistry)... [Pg.919]

TPD Temperature programmed desorption After pre-adsorption of gases on a surface, the desorption and/or reaction products are measured while the temperature Increases linearly with time. Coverages, kinetic parameters, reaction mechanism... [Pg.1852]

Modelling plasma chemical systems is a complex task, because these system are far from thennodynamical equilibrium. A complete model includes the external electric circuit, the various physical volume and surface reactions, the space charges and the internal electric fields, the electron kinetics, the homogeneous chemical reactions in the plasma volume as well as the heterogeneous reactions at the walls or electrodes. These reactions are initiated primarily by the electrons. In most cases, plasma chemical reactors work with a flowing gas so that the flow conditions, laminar or turbulent, must be taken into account. As discussed before, the electron gas is not in thennodynamic equilibrium... [Pg.2810]

This development has been generalized. Results for zero- and second-order irreversible reactions are shown in Figure 10. Results are given elsewhere (48) for more complex kinetics, nonisothermal reactions, and particle shapes other than spheres. For nonspherical particles, the equivalent spherical radius, three times the particle volume/surface area, can be used for R to a good approximation. [Pg.172]

Students of professor R. G. Anthony at College Station, TX used a mechanism identical (by chance) to that in UCKRON for derivation of the kinetics. Yet they assumed a model in which the surface reaction controls, and had two temperature dependent terms in the denominator as 13,723 and 18,3 16 cal/mol. Multiplying both the numerator and the denominator with exp(-15,000) would come close to the Ea,/R about 15,000 cal/mol, with a negative sign, and a denominator similar to that in the previously discussed models. [Pg.139]

R. M. Zilf, E. Gulari, Y. Barshad. Kinetic phase transitions in an irreversible surface-reaction model. Phys Rev Lett 56 2553-2556, 1986. [Pg.432]

I. Jensen, H. C. Fogedby. Kinetic phase transitions in a surface-reaction model with diffusion Computer simulations and mean-field theory. Phys Rev A 2 1969-1975, 1990. [Pg.434]

A. Maltz, E. V. Albano. Kinetic phase transitions in dimer-dimer surface reaction models studied by means of mean-field and Monte Carlo methods. Surf Sci 277-A A-42S, 1992. [Pg.435]

K. M. Khan, K. Yaldram, A. Ahmad. Kinetics of a dimer-dimer irreversible catalytic surface reaction. J Chem Phys (in press). [Pg.435]

H. C. Kang, W. H. Weinberg. Interface roughening and kinetics of poisoning in a surface reaction. J Chem Phys 700 1630-1633, 1994. [Pg.436]

Kinetic theories of adsorption, desorption, surface diffusion, and surface reactions can be grouped into three categories. (/) At the macroscopic level one proceeds to write down kinetic equations for macroscopic variables, in particular rate equations for the (local) coverage or for partial coverages. This can be done in a heuristic manner, much akin to procedures in gas-phase kinetics or, in a rigorous approach, using the framework of nonequihbrium thermodynamics. Such an approach can be used as long as... [Pg.439]

If the PBR is less than unity, the oxide will be non-protective and oxidation will follow a linear rate law, governed by surface reaction kinetics. However, if the PBR is greater than unity, then a protective oxide scale may form and oxidation will follow a reaction rate law governed by the speed of transport of metal or environmental species through the scale. Then the degree of conversion of metal to oxide will be dependent upon the time for which the reaction is allowed to proceed. For a diffusion-controlled process, integration of Pick s First Law of Diffusion with respect to time yields the classic Tammann relationship commonly referred to as the Parabolic Rate Law ... [Pg.965]


See other pages where Surface reaction kinetics is mentioned: [Pg.899]    [Pg.934]    [Pg.1783]    [Pg.1959]    [Pg.514]    [Pg.368]    [Pg.537]    [Pg.344]    [Pg.376]    [Pg.505]    [Pg.435]    [Pg.441]    [Pg.443]    [Pg.445]    [Pg.447]    [Pg.449]    [Pg.451]    [Pg.453]    [Pg.457]    [Pg.459]    [Pg.463]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.471]    [Pg.473]    [Pg.475]    [Pg.477]    [Pg.479]    [Pg.213]    [Pg.267]    [Pg.239]   
See also in sourсe #XX -- [ Pg.267 , Pg.287 ]




SEARCH



A Summary of Surface Reaction Kinetics

Approximate Kinetic Expressions for Electrocatalytic Reactions on Heterogeneous Surfaces

Catalytic kinetics surface reaction

Chemical Reaction Rate Surface Kinetics

Data analysis, enzyme kinetics surface reactions

Equilibrium constants surface reaction kinetics

Ideal surface reactions kinetic equation

Kinetics of reactions on surfaces

Kinetics of surface reactions

Kinetics surface-reaction control

Kinetics surfaces

Kinetics, surface-reaction controlling

Mass action expressions surface reaction kinetics

Reaction kinetic surface

Reaction kinetics, distinguishing adsorption from surface

Surface Kinetics of Chemical Reactions

Surface Reaction Kinetics-Based Models

Surface chemical reactions kinetics

Surface chemistry Kinetics of heterogeneous chemical reaction

Surface kinetic reaction stages

Surface reaction kinetic parameters

Surface reaction kinetics activation energy calculation

Surface reaction kinetics composite mechanism reactions

Surface reaction kinetics description

Surface reaction kinetics numerical evaluation

Surface reaction kinetics unimolecular decomposition

Surface reaction kinetics vacuum system

© 2024 chempedia.info