Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydride phases

Transition metal hydrides. These are formed by hydrogen uptake by the metal. The phases are often non-stoicheiometric. [Pg.208]

The principal applications of REELS are thin-film growth studies and gas-surface reactions in the few-monolayer regime when chemical state information is required. In its high spatial resolution mode it has been used to detect submicron metal hydride phases and to characterize surface segregation and difRision as a function of grain boundary orientation. REELS is not nearly as commonly used as AES orXPS. [Pg.325]

In the chemical process industry molybdenum has found use as washers and bolts to patch glass-lined vessels used in sulphuric acid and acid environments where nascent hydrogen is produced. Molybdenum thermocouples and valves have also been used in sulphuric acid applications, and molybdenum alloys have been used as reactor linings in plant used for the production of n-butyl chloride by reactions involving hydrochloric and sulphuric acids at temperatures in excess of 170°C. Miscellaneous applications where molybdenum has been used include the liquid phase Zircex hydrochlorination process, the Van Arkel Iodide process for zirconium production and the Metal Hydrides process for the production of super-pure thorium from thorium iodide. [Pg.849]

Switendick was the first to apply modem electronic band theory to metal hydrides [5]. He compared the measured density of electronic states with theoretical results derived from energy band calculations in binary and pseudo-binary systems. Recently, the band structures of intermetallic hydrides including LaNi5Ht and FeTiH v have been summarized in a review article by Gupta and Schlapbach [6], All exhibit certain common features upon the absorption of hydrogen and formation of a distinct hydride phase. They are ... [Pg.212]

This survey presents an overview of the chemistry of metal-hydrogen systems which form hydride phases by the reversible reaction with hydrogen. The discussion then focuses on the AB5 class and, to a lesser extent, the AB2 class of metal hydrides, both of which are of interest for battery applications. [Pg.227]

There are few systematic guidelines which can be used to predict the properties of AB2 metal hydride electrodes. Alloy formulation is primarily an empirical process where the composition is designed to provide a bulk hydride-forming phase (or phases) which form, in situ, a corrosion— resistance surface of semipassivating oxide (hydroxide) layers. Lattice expansion is usually reduced relative to the ABS hydrides because of a lower VH. Pressure-composition isotherms of complex AB2 electrode materials indicate nonideal behaviour. [Pg.228]

Neutron diffraction studies have shown that in both systems Pd-H (17) and Ni-H (18) the hydrogen atoms during the process of hydride phase formation occupy octahedral positions inside the metal lattice. It is a process of ordering of the dissolved hydrogen in the a-solid solution leading to a hydride precipitation. In common with all other transition metal hydrides these also are of nonstoichiometric composition. As the respective atomic ratios of the components amount to approximately H/Me = 0.6, the hydrogen atoms thus occupy only some of the crystallographic positions available to them. [Pg.250]

The mechanism of the poisoning effect of nickel or palladium (and other metal) hydrides may be explained, generally, in terms of the electronic theory of catalysis on transition metals. Hydrogen when forming a hydride phase fills the empty energy levels in the nickel or palladium (or alloys) d band with its Is electron. In consequence the initially d transition metal transforms into an s-p metal and loses its great ability to chemisorb and properly activate catalytically the reactants involved. [Pg.289]

In 1931, Hieber and Leutert reported Fe(CO)4(H)2 not only as the first iron hydride complex but also as the first transition-metal hydride complex (FeH2 was reported in 1929 from FeCl2 and PhMgBr under a hydrogen atmosphere. However, it exists only in a gas phase) [2, 3]. The complex synthesized from Fe(CO)5 and OH (Scheme 1) is isolable only at low temperature and decomposes at room temperature into Fe(CO)5, Fe(CO)3, and H2. [Pg.28]

Phase-transfer catalytic conditions provide an extremely powerful alternative to the use of alkali metal hydrides for the synthesis of cyclopropanes via the reaction of dimethyloxosulphonium methylides with electron-deficient alkenes [e.g. 54-56] reaction rates are increased ca. 20-fold, while retaining high yields (86-95%). Dimethylphenacylsulphonium bromide reacts in an analogous manner with vinyl-sulphones [57] and with chalcones [58] and trimethylsulphonium iodide reacts with Schiff bases and hydrazones producing aziridines [59]. [Pg.284]

Sodium dithionite is well established [ 1 ] as a powerful reducing agent under alkaline conditions. Its redox potential is close to that of sodium borohydride [2] and, in several respects, there are advantages in the use of sodium dithionite as an alternative to the metal hydrides under phase-transfer catalytic conditions, particularly in the reduction of carbonyl compounds [3],... [Pg.495]

This review focuses on the kinetics of reactions of the silicon, germanium, and tin hydrides with radicals. In the past two decades, progress in determining the absolute kinetics of radical reactions in general has been rapid. The quantitation of kinetics of radical reactions involving the Group 14 metal hydrides in condensed phase has been particularly noteworthy, progressing from a few absolute rate constants available before 1980 to a considerable body of data we summarize here. [Pg.68]


See other pages where Metal hydride phases is mentioned: [Pg.614]    [Pg.442]    [Pg.196]    [Pg.614]    [Pg.442]    [Pg.196]    [Pg.180]    [Pg.66]    [Pg.281]    [Pg.328]    [Pg.64]    [Pg.532]    [Pg.209]    [Pg.209]    [Pg.213]    [Pg.214]    [Pg.216]    [Pg.271]    [Pg.285]    [Pg.156]    [Pg.468]    [Pg.450]    [Pg.44]    [Pg.194]    [Pg.582]    [Pg.332]    [Pg.332]    [Pg.388]    [Pg.393]    [Pg.394]    [Pg.395]    [Pg.606]    [Pg.119]    [Pg.140]    [Pg.162]    [Pg.31]    [Pg.78]    [Pg.207]    [Pg.16]    [Pg.21]   
See also in sourсe #XX -- [ Pg.209 ]




SEARCH



Hydrides phase

Metal phases

Metallic phase

Thermodynamic Tuning of Single Phase Hydrides by Substitution on the Metal Site

© 2024 chempedia.info