Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Supports pore size control

One of the most promising applications of enzyme-immobilized mesoporous materials is as microscopic reactors. Galameau et al. investigated the effect of mesoporous silica structures and their surface natures on the activity of immobilized lipases [199]. Too hydrophilic (pure silica) or too hydrophobic (butyl-grafted silica) supports are not appropriate for the development of high activity for lipases. An adequate hydrophobic/hydrophilic balance of the support, such as a supported-micelle, provides the best route to enhance lipase activity. They also encapsulated the lipases in sponge mesoporous silicates, a new procedure based on the addition of a mixture of lecithin and amines to a sol-gel synthesis to provide pore-size control. [Pg.141]

A Y-type zeolite membrane was formed on a porous a-alumina support tube. The membranes produced separated CO2 from N2 at a permeance of the order of 10- mol m-2 s-i Pa-i and a selectivity of 20-100 at 30°C. This rapid and selective permeation was due to the pore-size controlled adsorption. [Pg.668]

Low-sodium silica gels, with high surface area and pore volume, are usually chosen as supports, as they can be synthesized to give a wide range of properties. Catalyst activity is proportional to surface area, while the pore size controls productivity and the molecular weight of the polymer. Small catalyst particles are used but the actual size depends on the polymerization process. Sluny reactors require particles in the size range 50-180 pm, whereas gas phase processes use smaller particles in the range 20-90 pm. [Pg.323]

The shape and pore size of the particles controlled the catalyst activity and molecular weight of the polymer chain in the early catalysts. The molecular weight distribution of the polymer could not be controlled veiy easily because of differences in the active sites. It is accepted that several different active centers can form with chromic oxide and sihca and that the ease of reduction of each type depends on the operating temperature. Catalysts which have been activated at 850°C contain fewer active sites that seem to reduce easily. This supports the observation that these catalysts produce polymers with a narrow molecular weight distribution. In general, however, the molecular weight of the polymer decreases as the pore size of the catalyst increases. Pore size controls both performance and selectivity. [Pg.325]

Membranes. Membranes comprised of activated alumina films less than 20 )J.m thick have been reported (46). These films are initially deposited via sol—gel technology (qv) from pseudoboehmite sols and are subsequently calcined to produce controlled pore sizes in the 2 to 10-nm range. Inorganic membrane systems based on this type of film and supported on soHd porous substrates have been introduced commercially. They are said to have better mechanical and thermal stabiUty than organic membranes (47). The activated alumina film comprises only a miniscule part of the total system (see Mel rane technology). [Pg.156]

The pore size, the pore-size distribution, and the surface area of organic polymeric supports can be controlled easily during production by precipitation processes that take place during the conversion of liquid microdroplets to solid microbeads. For example, polystyrene beads produced without cross-linked agents or diluent are nonporous or contain very small pores. However, by using bigb divinylbenzene (DVB) concentrations and monomer diluents, polymer beads with wide porosities and pore sizes can be produced, depending on the proportion of DVB and monomer diluent. Control of porosity by means of monomer diluent has been extensively studied for polystyrene (3-6) and polymethacrylate (7-10). [Pg.6]

New templated polymer support materials have been developed for use as re versed-phase packing materials. Pore size and particle size have not usually been precisely controlled by conventional suspension polymerization. A templated polymerization is used to obtain controllable pore size and particle-size distribution. In this technique, hydrophilic monomers and divinylbenzene are formulated and filled into pores in templated silica material, at room temperature. After polymerization, the templated silica material is removed by base hydrolysis. The surface of the polymer may be modified in various ways to obtain the desired functionality. The particles are useful in chromatography, adsorption, and ion exchange and as polymeric supports of catalysts (39,40). [Pg.10]

The selectivity for acetic anhydride in the catalytic dehydration of acetic acid could be controlled by the pore size of pure mesoporous silica SBA-15. New acid catalyst comprising Keggin-type heteropoly acid supported on SBA-15 enhanced the activity etfectively when tungstophosphoric acid was highly dispersed on the silica substrate. [Pg.788]

Textural mesoporosity is a feature that is quite frequently found in materials consisting of particles with sizes on the nanometer scale. For such materials, the voids in between the particles form a quasi-pore system. The dimensions of the voids are in the nanometer range. However, the particles themselves are typically dense bodies without an intrinsic porosity. This type of material is quite frequently found in catalysis, e.g., oxidic catalyst supports, but will not be dealt with in the present chapter. Here, we will learn that some materials possess a structural porosity with pore sizes in the mesopore range (2 to 50 nm). The pore sizes of these materials are tunable and the pore size distribution of a given material is typically uniform and very narrow. The dimensions of the pores and the easy control of their pore sizes make these materials very promising candidates for catalytic applications. The present chapter will describe these rather novel classes of mesoporous silica and carbon materials, and discuss their structural and catalytic properties. [Pg.118]

Though electrophoretic separations were historically first studied in free solutions, more recent developments have extended its application to solid supports, including polyacrylamide, agarose, and starch gels. The purpose of a solid support is to suppress convection current and diffusion so that sharp separations may be retained. In addition, support gels of controlled pore sizes can serve as size-selective molecular sieves to enhance separation - smaller molecules experience less frictional resistance and move faster, while larger molecules move slower. Therefore, separation can be achieved based on molecular size. [Pg.241]

With anodic oxidation very controlled and narrow pore size distributions can be obtained. These membranes mounted in a small module may be suitable for ultrafiltration, gas separation with Knudsen diffusion and in biological applications. At present one of the main disadvantages is that the layer has to be supported by a separate layer to produce the complete membrane/support structure. Thus, presently applications are limited to laboratory-scale separations since large surface area modules of such membranes are unavailable. [Pg.49]

Another possible solution to the problem of analyzing multiple-layered membrane composites is a newly developed method using NMR spin-lattice relaxation measurements (Glaves 1989). In this method, which allows a wide range of pore sizes to be studied (from less than 1 nm to greater than 10 microns), the moisture content of the composite membrane is controlled so that the fine pores in the membrane film of a two-layered composite are saturated with water, but only a small quantity of adsorbed water is present in the large pores of the support. It has been found that the spin-lattice relaxation decay time of a fluid (such as water) in a pore is shorter than that for the same fluid in the bulk. From the relaxation data the pore volume distribution can be calculated. Thus, the NMR spin-lattice relaxation data of a properly prepared membrane composite sample can be used to derive the pore size distribution that conventional pore structure analysis techniques... [Pg.76]

To increase the activity, the artificial introduction of mesoporosity for the thick herringbone CNF has been achieved. An optimum pore size, introduced by the controlled gasification procedure, increases substantially the activity of catalysts supported on mesoporous H-CNFs. Small-pore material may show higher activity in the half cell, but it is less effective in the single cell due to insufficient contact ofthe metal. We have shown here that the harsher the gasification procedure, the better is the performance in the half and single cells. [Pg.85]

The importance of aluminas is due to their availability in large quantities and in high purity presenting high thermal stability and surface areas (in the 199-259 mVg range and even more). Their pore volumes can be controlled during fabrication and bimodal pore size distributions can be achieved. However, besides these textural aspects, the surface chemical properties of aluminas play a major role, since these are involved in the formation and stabilization of catalytically active components supported on their surfaces. Despite the widespread interest in catalytic aluminas there is still only a limited understanding about the real nature of the alumina surface [44,89,99]. [Pg.206]

For the detailed study of reaction-transport interactions in the porous catalytic layer, the spatially 3D model computer-reconstructed washcoat section can be employed (Koci et al., 2006, 2007a). The structure of porous catalyst support is controlled in the course of washcoat preparation on two levels (i) the level of macropores, influenced by mixing of wet supporting material particles with different sizes followed by specific thermal treatment and (ii) the level of meso-/ micropores, determined by the internal nanostructure of the used materials (e.g. alumina, zeolites) and sizes of noble metal crystallites. Information about the porous structure (pore size distribution, typical sizes of particles, etc.) on the micro- and nanoscale levels can be obtained from scanning electron microscopy (SEM), transmission electron microscopy ( ), or other high-resolution imaging techniques in combination with mercury porosimetry and BET adsorption isotherm data. This information can be used in computer reconstruction of porous catalytic medium. In the reconstructed catalyst, transport (diffusion, permeation, heat conduction) and combined reaction-transport processes can be simulated on detailed level (Kosek et al., 2005). [Pg.121]


See other pages where Supports pore size control is mentioned: [Pg.197]    [Pg.255]    [Pg.471]    [Pg.1027]    [Pg.230]    [Pg.159]    [Pg.262]    [Pg.156]    [Pg.194]    [Pg.311]    [Pg.3]    [Pg.4]    [Pg.34]    [Pg.232]    [Pg.77]    [Pg.266]    [Pg.785]    [Pg.144]    [Pg.214]    [Pg.6]    [Pg.120]    [Pg.122]    [Pg.309]    [Pg.9]    [Pg.165]    [Pg.4]    [Pg.408]    [Pg.185]    [Pg.16]    [Pg.20]    [Pg.29]    [Pg.38]    [Pg.237]    [Pg.15]    [Pg.612]    [Pg.211]   
See also in sourсe #XX -- [ Pg.157 ]




SEARCH



Control support

Pore control

Pore size

Pore size, controlling

© 2024 chempedia.info