Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pure silica

The isochoric simulations for pure silica were conducted for fixed density values ranging between 2.97 and 4.2 g cm and for a temperature of 3000 K. The evolution of pressure as a function of density is given [Pg.173]

For pure silica, the density was calculated by Bacon et at. [22] from surface tension values. The results are reported in Table 3.4.4. [Pg.174]


Transparent fused silica can be formed at a temperature of 1200°C and a pressure of 13.8 MPa (2000 psi) from silica powder consisting of 15 nm ultimate particles (92) or by electric arc fusion of pure silica sand having low iron and alkali metal contents. The cooled product is ground to the desired particle size. Fused sihca is primarily manufactured by C-E Minerals, Minco, and Precision Electro Minerals in the United States by Chuo Denko, Denki Kagaku Kogyo, NKK, Showa Denko, and Toshiba Ceramics in Japan. Based on 1988 data and projected growth, an estimated 135,000 metric tons of fused siUca were used in 1994 as a sacrificial component or investment casting in the manufacture of metals and as a component in refractory materials (62). [Pg.494]

Filter aids should have low bulk density to minimize settling and aid good distribution on a filter-medium surface that may not be horizontal. They should also be porous and capable of forming a porous cake to minimize flow resistance, and they must be chemically inert to the filtrate. These characteristics are all found in the two most popular commercial filter aids diatomaceous silica (also called diatomite, or diatomaceous earth), which is an almost pure silica prepared from deposits of diatom skeletons and expanded perhte, particles of puffed lava that are principally aluminum alkali siheate. Cellulosic fibers (ground wood pulp) are sometimes used when siliceous materials cannot be used but are much more compressible. The use of other less effective aids (e.g., carbon and gypsum) may be justified in special cases. Sometimes a combination or carbon and diatomaceous silica permits adsorption in addition to filter-aid performance. Various other materials, such as salt, fine sand, starch, and precipitated calcium carbonate, are employed in specific industries where they represent either waste material or inexpensive alternatives to conventional filter aids. [Pg.1708]

In the present work low temperature adsoi ption of fluoroform and CO, were used to characterize surface basicity of silica, both pure and exposed to bases. It was found that adsorption of deuterated ammonia results in appearance of a new CH stretching vibration band of adsorbed CHF, with the position typical of strong basic sites, absent on the surface of pure silica. Low-frequency shift of mode of adsorbed CO, supports the conclusion about such basicity induced by the presence of H-bonded bases. [Pg.56]

The viscosity of liquid silicates such as drose containing barium oxide and silica show a rapid fall between pure silica and 20 mole per cent of metal oxide of nearly an order of magnitude at 2000 K, followed by a slower decrease as more metal oxide is added. The viscosity then decreases by a factor of two between 20 and 40 mole per cent. The activation energy for viscous flow decreases from 560 kJ in pure silica to 160-180kJmol as the network is broken up by metal oxide addition. The introduction of CaFa into a silicate melt reduces the viscosity markedly, typically by about a factor of drree. There is a rapid increase in the thermal expansivity coefficient as the network is dispersed, from practically zero in solid silica to around 40 cm moP in a typical soda-lime glass. [Pg.309]

Silicon atoms bond strongly with four oxygen atoms to give a tetrahedral unit (Fig. 16.4a). This stable tetrahedron is the basic unit in all silicates, including that of pure silica (Fig. 16.3c) note that it is just the diamond cubic structure with every C atom replaced by an Si04 unit. But there are a number of other, quite different, ways in which the tetrahedra can be linked together. [Pg.170]

Pure silica contains no metal ions and every oxygen becomes a bridge between two silicon atoms giving a three-dimensional network. The high-temperature form, shown in Fig. 16.3(c), is cubic the tetrahedra are stacked in the same way as the carbon atoms in the diamond-cubic structure. At room temperature the stable crystalline form of silica is more complicated but, as before, it is a three-dimensional network in which all the oxygens bridge silicons. [Pg.172]

Zorbax PSM particles are made from small (80-2000 A), extremely uniform colloidal silica sol beads. In a patented polymerization process, these beads are agglutinated to form spherical particles. The size of the Zorbax PSM particles is controlled by the polymerization process, and the pore size is determined by the size of the silica sol beads. After polymerization, the silica is heated to remove the organic polymer and sinter the particles. The result is a spherical, porous, mechanically stable, pure silica particle that provides excellent chromatographic performance (Pig. 3.1). [Pg.76]

Another example is the determination of pure silica in an impure ignited silica residue. The latter is treated in a platinum crucible with a mixture of sulphuric and hydrofluoric acids the silica is converted into the volatile silicon tetrafluoride ... [Pg.445]

The residue consists of the impurities, and the loss in weight of the crucible gives the amount of pure silica present, provided that the contaminants are in the same form before and after the hydrofluoric acid treatment and are not volatilised in the operation. Although silicon is not the only element that forms a volatile fluoride, it is by far the most abundant and most often encountered element consequently the volatilisation method of separation is generally satisfactory. [Pg.445]

Determination of Metal Precursor Mobilities During Pretreatment. Relative precursor mobilities were obtained by premixing the sllica-or alumina-supported metal catalysts with pure silica (Cab-O-Sll, grade M-5, Cabot Corp.) or pure alumina (Alon C, Cabot Corp.) In a 1 2 ratio prior to pretreatment. The catalyst and silica were ground together using a mortar and pestle for at least 0.5 hr. before they were placed in the Pyrex microreactor for pretreatment. [Pg.296]

Pure silica-aluminas are strongly deactivated, losing about 80% of their activity before reaching the steady-state. The loss in pure CoMo/Si02 catalyst is much less pronounced (about 15%). Mechanical mixtures represent an intermediate case they lose between 35% and 50% of their activity. [Pg.102]

This interpretation of the experimental data is supported by the differences observed in the deactivation patterns and carbon contents after test, since one notorious effect of Hjp is the capacity to diminish the deactivation caused by coke deposition on the active sites [21,22]. This is supposed to be due to a reaction with the coke precursors, very likely a hydrogenolysis. In pure silica-aluminas, where no source of spillover is present, no special protection against deactivation should be observed. Indeed, the silica-aluminas lose most of their activity (about 80%) before reaching the steady-state and present the highest carbon contents after catalytic test. On the other hand, in the case of the mechanical mixtures, where spillover hydrogen is continuously produced by the CoMo/Si02 phase and can migrate to the silica-alumina surface, the predicted protection effect is noticed. The relative losses of activity are much lower... [Pg.104]

The Ni and S contents on the catalyst series were determined after calcination at 600°C. As shown in Table 1, sulfate was only retained on the silica support when Ni was present. Infrared studies have previously shown that sulfate groups impregnated on pure silica are thermally unstable [13], Therefore, the S04/Ni molar ratios, close to unity, together with the colors resulting after calcining the silica-supported samples made us conclude that Ni was in the form of NiS04 On zirconia, the S04/Ni ratios were larger than one because the sulfate can be associated with both, Ni and the support. [Pg.555]

Thermal reduction at 623 K by means of CO is a common method of producing reduced and catalytically active chromium centers. In this case the induction period in the successive ethylene polymerization is replaced by a very short delay consistent with initial adsorption of ethylene on reduce chromium centers and formation of active precursors. In the CO-reduced catalyst, CO2 in the gas phase is the only product and chromium is found to have an average oxidation number just above 2 [4,7,44,65,66], comprised of mainly Cr(II) and very small amount of Cr(III) species (presumably as Q -Cr203 [66]). Fubini et al. [47] reported that reduction in CO at 623 K of a diluted Cr(VI)/Si02 sample (1 wt. % Cr) yields 98% of the silica-supported chromium in the +2 oxidation state, as determined from oxygen uptake measurements. The remaining 2 wt. % of the metal was proposed to be clustered in a-chromia-like particles. As the oxidation product (CO2) is not adsorbed on the surface and CO is fully desorbed from Cr(II) at 623 K (reduction temperature), the resulting catalyst acquires a model character in fact, the siliceous part of the surface is the same of pure silica treated at the same temperature and the anchored chromium is all in the divalent state. [Pg.11]

Sefcik J, Demiralp E, Cagin T, Goddard WA (2002) Dynamic charge equilibration-morse stretch force field application to energetics of pure silica zeolites. J Comput Chem 23(16) 1507-1514... [Pg.252]

One of the most promising applications of enzyme-immobilized mesoporous materials is as microscopic reactors. Galameau et al. investigated the effect of mesoporous silica structures and their surface natures on the activity of immobilized lipases [199]. Too hydrophilic (pure silica) or too hydrophobic (butyl-grafted silica) supports are not appropriate for the development of high activity for lipases. An adequate hydrophobic/hydrophilic balance of the support, such as a supported-micelle, provides the best route to enhance lipase activity. They also encapsulated the lipases in sponge mesoporous silicates, a new procedure based on the addition of a mixture of lecithin and amines to a sol-gel synthesis to provide pore-size control. [Pg.141]

In this paper, three zeolitic materials were used silicalite-2, pure silica ZSM-11 with MEL framework, synthesized according to Bibby et.al. [7] zeolite A synthesized via the Chamell hydrothermal method [8] SAPO STA-7 was synthesized according to Wright et. al. [9]... [Pg.24]

Structural study by solid state NMR and powder X-ray diffraction of the pure silica chabazite through water intrusion-extrusion processes... [Pg.133]

Water intrusion-extrusion isotherms performed at room temperature on hydrophobic pure silica chabazite show that the water-Si-CHA system displays a real spring behavior. However, Pressure/Volume differences are observed between the first and the second cycle indicating that some water molecules interact with the inorganic framework after the first intrusion. 29Si and especially H solid state NMR and powder X-ray diffraction demonstrated the creation of new defect sites upon the intrusion-extrusion of water and the existence of two kinds of water molecules trapped in the super-cage of the Si-CHA a first layer of water strongly hydrogen bonded with the silanols of the framework and a subsequent layer of liquid-like physisorbed water molecules in interaction with the first water layer. [Pg.133]


See other pages where Pure silica is mentioned: [Pg.186]    [Pg.175]    [Pg.307]    [Pg.310]    [Pg.336]    [Pg.172]    [Pg.736]    [Pg.197]    [Pg.56]    [Pg.41]    [Pg.797]    [Pg.100]    [Pg.103]    [Pg.104]    [Pg.105]    [Pg.9]    [Pg.277]    [Pg.282]    [Pg.74]    [Pg.421]    [Pg.72]    [Pg.202]    [Pg.145]    [Pg.508]    [Pg.16]    [Pg.295]    [Pg.8]    [Pg.123]    [Pg.124]    [Pg.465]    [Pg.466]    [Pg.133]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



© 2024 chempedia.info