Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laboratory-scale Separations

Batch vs Continuous Reactors. Usually, continuous reactors yield much lower energy use because of increased opportunities for heat interchange. Sometimes the savings are even greater in downstream separation units than in the reaction step itself Especially for batch reactors, any use of refrigeration to remove heat should be critically reviewed. Batch processes often evolve Httle from the laboratory-scale glassware setups where refrigeration is a convenience. [Pg.83]

A number of special processes have been developed for difficult separations, such as the separation of the stable isotopes of uranium and those of other elements (see Nuclear reactors Uraniumand uranium compounds). Two of these processes, gaseous diffusion and gas centrifugation, are used by several nations on a multibillion doUar scale to separate partially the uranium isotopes and to produce a much more valuable fuel for nuclear power reactors. Because separation in these special processes depends upon the different rates of diffusion of the components, the processes are often referred to collectively as diffusion separation methods. There is also a thermal diffusion process used on a modest scale for the separation of heflum-group gases (qv) and on a laboratory scale for the separation of various other materials. Thermal diffusion is not discussed herein. [Pg.75]

Anaerobic digestion Methane gas Shredding, air separation Technology on laboratory scale only... [Pg.2246]

The oxidation of organic compounds by manganese dioxide has recently been reviewed. It is of limited application for the introduction of double bonds, but the advantages of mildness and simple workup make it attractive for some laboratory-scale transformations. Manganese dioxide is similar to chloranil in that it will oxidize A -3-ketones to A -dienones in refluxing benzene. Unfortunately, this reaction does not normally go to completion, and the separation of product from starting material is difficult. However, Sondheimer found that A -3-alcohols are converted into A -3-ketones, and in this instance separation is easier, but conversions are only 30%. (cf. Harrison s report that manganese dioxide in DMF or pyridine at room temperature very slowly converts A -3-alcohols to A -3-ketones.)... [Pg.319]

Polyfluoroparafins, fluorocarbons, and other perfluoro denvatives show remarkable heat stability They are usually stable at temperatures below 300 C Thermal decomposition at 500-800 °C, however, causes all possible splits in the molecules and produces complex mixtures that are difficult to separate For preparative purposes, only pyrolyses that do not yield complicated mixtures of products are of interest [7] The pyrolytic reacpons of polyfluoro and perfluoro derivatives, when carried out at 500-11 Ofl °C, represent the most useful route to preparative generation of perfluoroolefins on the laboratory scale [7]... [Pg.918]

Some other methods are more appropriate when separating small amounts of material in laboratory-scale work and are most often encountered there. Indeed, it is their capacity to deal with exceedingly small quantities that is the strength of a number of methods that together encompass the various forms of chromatography. The first step in all types of chromatography involves absorbing the... [Pg.572]

The importance of chemical syntheses of a-amino acids on industrial scale is limited by the fact that the standard procedure always yields the racemic mixture (except for the achiral glycine H2N-CH2-COOH and the corresponding amino acid from symmetrical ketones R-CO-R). A subsequent separation of the enantiomers then is a major cost factor. Various methods for the asymmetric synthesis of a-amino acids on laboratory scale have been developed, and among these are asymmetric Strecker syntheses as well. ... [Pg.271]

Flash chromatography is widely employed for the purification of crude products obtained by synthesis at a research laboratory scale (several grams) or isolated as extracts from natural products or fermentations. The solid support is based on silica gel, and the mobile phase is usually a mixture of a hydrocarbon, such as hexane or heptane, with an organic modifier, e.g. ethyl acetate, driven by low pressure air. (Recently the comparison of flash chromatography with countercurrent chromatography (CCC), a technique particularly adapted to preparative purposes, has been studied for the separation of nonchiral compounds [90].)... [Pg.7]

Sixteen solid-phase materials were tested on a laboratory scale and the antho-cyanin and sugar content of collected fractions were determined. Among these, reverse-phase silica gels and macroreticular non-ionic acrylic polymer adsorbents such as Serdolit PAD IV or Amberlite XAD-7 turned out to be most suitable. SPE was used to investigate these materials on an enlarged scale, improving elution gradient and column purification. Amberlite XAD-7 was successfully applied in a middle-scale separation. ... [Pg.313]

Hence, once a B ion is freed from the resin, it is immediately complexed and there is much less tendency for it to be resorbed lower down the column as would happen with a stable cationic species. This is an illustration of separation by elution analysis. Its most important application is in the separation of rare earths. When used on a laboratory scale in chemical analysis, this separation technique is known as ion-exchange chromatography. [Pg.505]

This flow field is somewhat idealized, and cannot be exactly reproduced in practice. For example, near the planar surfaces, shear flow is inevitable, and, of course, the range of % and y is consequently finite, leading to boundary effects in which the extensional flow field is perturbed. Such uniaxial flow is inevitably transient because the surfaces either meet or separate to laboratory scale distances. [Pg.189]

Another advantage of the micro-LC approach is that the required sample size is minimal, so the sample can be drawn from a 1-1 laboratory scale reactor without influencing the reactor composition. The ISCO pLC-500 microflow syringe pump has proven to be reliable and reproducible in evaluations in our laboratory. Capillary liquid columns have been fabricated on planar devices such as silicon to form a miniaturized separation device.19... [Pg.92]

Figure 6.6 ULtrafiLtration separates molecules based on size and shape, (a) Diagrammatic representation of a typical laboratory-scale ultrafiltration system. The sample (e.g. crude protein solution) is placed in the ultrafiltration chamber, where it sits directly above the ultrafilter membrane. The membrane, in turn, sits on a macroporous support to provide it with mechanical strength. Pressure is then applied (usually in the form of an inert gas), as shown. Molecules larger than the pore diameter (e.g. large proteins) are retained on the upstream side of the ultrafilter membrane. However, smaller molecules (particularly water molecules) are easily forced through the pores, thus effectively concentrating the protein solution (see also (b)). Membranes that display different pore sizes, i.e. have different molecular mass cut-off points, can be manufactured, (c) Photographic representation of an industrial-scale ultrafiltration system (photograph courtesy of Elga Ltd, UK)... Figure 6.6 ULtrafiLtration separates molecules based on size and shape, (a) Diagrammatic representation of a typical laboratory-scale ultrafiltration system. The sample (e.g. crude protein solution) is placed in the ultrafiltration chamber, where it sits directly above the ultrafilter membrane. The membrane, in turn, sits on a macroporous support to provide it with mechanical strength. Pressure is then applied (usually in the form of an inert gas), as shown. Molecules larger than the pore diameter (e.g. large proteins) are retained on the upstream side of the ultrafilter membrane. However, smaller molecules (particularly water molecules) are easily forced through the pores, thus effectively concentrating the protein solution (see also (b)). Membranes that display different pore sizes, i.e. have different molecular mass cut-off points, can be manufactured, (c) Photographic representation of an industrial-scale ultrafiltration system (photograph courtesy of Elga Ltd, UK)...
Using a fluidized bed electrode, this process was studied by Jircny 1985 [118]. Jircny [119] worked with a laboratory scale cell and subsequently a pilot plant. The pilot plant was designed to produce one ton of D-arabinose per year. The electrochemical reactor was 0.3 x 0.6 x 0.6 m and contained five 225 A cells in series. A major advantage of the electrooxidation over the usual chemical route (oxidation with sodium perchlorate) was the ease of separation of D-arabinose from the reactor outflow. In chemical routes, the separation is made difficult by the presence of large amounts of sodium chloride. [Pg.155]


See other pages where Laboratory-scale Separations is mentioned: [Pg.857]    [Pg.857]    [Pg.572]    [Pg.42]    [Pg.47]    [Pg.50]    [Pg.515]    [Pg.72]    [Pg.23]    [Pg.99]    [Pg.468]    [Pg.1677]    [Pg.2061]    [Pg.37]    [Pg.164]    [Pg.157]    [Pg.240]    [Pg.395]    [Pg.227]    [Pg.259]    [Pg.78]    [Pg.20]    [Pg.386]    [Pg.382]    [Pg.3]    [Pg.90]    [Pg.343]    [Pg.527]    [Pg.83]    [Pg.139]    [Pg.307]    [Pg.311]    [Pg.221]    [Pg.225]    [Pg.264]    [Pg.136]    [Pg.81]   
See also in sourсe #XX -- [ Pg.172 ]




SEARCH



Laboratory scale

Scale, separation

© 2024 chempedia.info